Computational Segmentation and Classification of Diabetic Glomerulosclerosis

Author:

Ginley Brandon,Lutnick BrendonORCID,Jen Kuang-YuORCID,Fogo Agnes B.,Jain Sanjay,Rosenberg AviORCID,Walavalkar Vighnesh,Wilding Gregory,Tomaszewski John E.,Yacoub Rabi,Rossi Giovanni Maria,Sarder Pinaki

Abstract

BackgroundPathologists use visual classification of glomerular lesions to assess samples from patients with diabetic nephropathy (DN). The results may vary among pathologists. Digital algorithms may reduce this variability and provide more consistent image structure interpretation.MethodsWe developed a digital pipeline to classify renal biopsies from patients with DN. We combined traditional image analysis with modern machine learning to efficiently capture important structures, minimize manual effort and supervision, and enforce biologic prior information onto our model. To computationally quantify glomerular structure despite its complexity, we simplified it to three components consisting of nuclei, capillary lumina and Bowman spaces; and Periodic Acid-Schiff positive structures. We detected glomerular boundaries and nuclei from whole slide images using convolutional neural networks, and the remaining glomerular structures using an unsupervised technique developed expressly for this purpose. We defined a set of digital features which quantify the structural progression of DN, and a recurrent network architecture which processes these features into a classification.ResultsOur digital classification agreed with a senior pathologist whose classifications were used as ground truth with moderate Cohen’s kappa κ = 0.55 and 95% confidence interval [0.50, 0.60]. Two other renal pathologists agreed with the digital classification with κ1 = 0.68, 95% interval [0.50, 0.86] and κ2 = 0.48, 95% interval [0.32, 0.64]. Our results suggest computational approaches are comparable to human visual classification methods, and can offer improved precision in clinical decision workflows. We detected glomerular boundaries from whole slide images with 0.93±0.04 balanced accuracy, glomerular nuclei with 0.94 sensitivity and 0.93 specificity, and glomerular structural components with 0.95 sensitivity and 0.99 specificity.ConclusionsComputationally derived, histologic image features hold significant diagnostic information that may augment clinical diagnostics.

Funder

University at Buffalo

National Institute of Diabetes and Digestive and Kidney Diseases

NIDDK

Publisher

American Society of Nephrology (ASN)

Subject

Nephrology,General Medicine

Reference32 articles.

1. CDC : Diabetes report card. 2014. Available at: https://www.cdc.gov/diabetes/library/reports/congress.html

2. Pathologic Classification of Diabetic Nephropathy

3. DeepLab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs.;Chen;IEEE Trans Pattern Anal Mach Intell,2018

4. An integrated iterative annotation technique for easing neural network training in medical image analysis.;Lutnick;Nat Mach Intell,2019

5. A threshold selection method from gray-level histograms.;Otsu;IEEE Trans Syst Man Cybern Syst,1976

Cited by 154 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3