Artificial intelligence assists identification and pathologic classification of glomerular lesions in patients with diabetic nephropathy

Author:

Lei Qunjuan,Hou Xiaoshuai,Liu Xumeng,Liang Dongmei,Fan Yun,Xu Feng,Liang Shaoshan,Liang Dandan,Yang Jing,Xie Guotong,Liu Zhihong,Zeng CaihongORCID

Abstract

Abstract Background Glomerular lesions are the main injuries of diabetic nephropathy (DN) and are used as a crucial index for pathologic classification. Manual quantification of these morphologic features currently used is semi-quantitative and time-consuming. Automatically quantifying glomerular morphologic features is urgently needed. Methods A series of convolutional neural networks (CNN) were designed to identify and classify glomerular morphologic features in DN patients. Associations of these digital features with pathologic classification and prognosis were further analyzed. Results Our CNN-based model achieved a 0.928 F1-score for global glomerulosclerosis and 0.953 F1-score for Kimmelstiel-Wilson lesion, further obtained a dice of 0.870 for the mesangial area and F1-score beyond 0.839 for three glomerular intrinsic cells. As the pathologic classes increased, mesangial cell numbers and mesangial area increased, and podocyte numbers decreased (p for all < 0.001), while endothelial cell numbers remained stable (p = 0.431). Glomeruli with Kimmelstiel-Wilson lesion showed more severe podocyte deletion compared to those without (p < 0.001). Furthermore, CNN-based classifications showed moderate agreement with pathologists-based classification, the kappa value between the CNN model 3 and pathologists reached 0.624 (ranging from 0.529 to 0.688, p < 0.001). Notably, CNN-based classifications obtained equivalent performance to pathologists-based classifications on predicting baseline and long-term renal function. Conclusion Our CNN-based model is promising in assisting the identification and pathologic classification of glomerular lesions in DN patients.

Funder

National Natural Science Foundation of China

Medical Scientific Research Project of Jiangsu Provincial Health Commission

National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3