Adenosine Regulates Renal Nitric Oxide Production in Hypothyroid Rats

Author:

FRANCO MARTHA,TAPIA EDILIA,MARTÍNEZ FLAVIO,DAVILA MA. EUGENIA,GRIMALDO JUANA INÉS,MEDINA KLELIA,HERRERA-ACOSTA JAIME

Abstract

Abstract. In the hypothyroid kidney, exogenous adenosine (ADO) produces vasodilation and restores renal function to near-normal values. This study evaluates whether this response is mediated by nitric oxide synthesis stimulated by adenosine. GFR and urinary excretion of NO2-/NO3- (UNO2-/NO3-) were measured in normal (NL) and hypothyroid (HTX) rats under basal conditions and during infusion of: intra-aortic ADO, intravenously, 1,3-dipropyl-8p-sulfophenylxanthine (DPSPX), 8-cyclopentyl-1,3-dipropyl xanthine (DPCPX), Nω-nitro-L-arginine methylester (L-NAME) + ADO, L-NAME + PSPX, L-NAME + DPCPX, and intrarenal (IR) ADO or DPCPX + IR ADO. Intra-aortic ADO induced a fall in GFR and increased UNO2-/NO3- slightly in NL rats; in HTX rats, both GFR and UNO2-/NO3- increased significantly. DPSPX and DPCPX increased UNO2-/NO3- excretion in NL animals with minor changes in GFR; the blockers increased both GFR and UNO2-/NO3- in HTX rats. L-NAME completely blocked the increase in NO2-/NO3- induced by ADO, DPSPX, and DPCPX. The intrarenal infusion of ADO at 1, 10, and 35 nmol/kg per min progressively decreased GFR with a slight increase in UNO2-/NO3- in NL rats; in the HTX, GFR increased with the highest dose and UNO2-/NO3- progressively increased. DPCPX prevented the fall in GFR induced by intrarenal ADO in NL rats, with no further changes in UNO2-/NO3-; in HTX rats, intrarenal ADO under A1 blockade further increased GFR and UNO2-/NO3-. Arterial and venous ADO concentrations were lower in the HTX rats. In the HTX kidney, NO production was stimulated by ADO, most likely through activation of A2 or A3 receptors, whereas A1 receptors had an inhibitory effect. Thus, ADO receptors are involved in the regulation of kidney function in pathophysiologic conditions.

Publisher

American Society of Nephrology (ASN)

Subject

Nephrology,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3