Renal interstitial adenosine is increased in angiotensin II-induced hypertensive rats

Author:

Franco Martha,Bautista Rocio,Pérez-Méndez Oscar,González Lidia,Pacheco Ursino,Sánchez-Lozada L. G.,Santamaría José,Tapia Edilia,Monreal Rogelio,Martínez Flavio

Abstract

Since marked renal vasoconstriction is observed in angiotensin II (ANG II)-mediated hypertensive rats, we studied the possible interaction between ANG II and adenosine in this model. ANG II was infused into male Wistar rats through osmotic minipumps (435 ng·kg−1·min−1) for 14 days. In sham and ANG II groups, renal tissue and interstitial adenosine were measured; both increased to a similar twofold extent in the ANG II-treated rats (31.40 ± 4 vs. 62.0 ± 8.4 nM, sham vs. ANG II, interstitial adenosine; P< 0.001). The latter decreased by 47% with the specific blockade of 5′-nucleotidase. Glomerular hemodynamics demonstrated marked renal vasoconstriction in the angiotensin-treated group, which was reverted by an adenosine A1-receptor antagonist (8-cyclopentyl-1,3-dipropylxanthine, 10 μg·kg−1·min−1). 5′-Nucleotidase and adenosine deaminase (ADA) activities were measured in the cytosolic and membrane fractions. Only the membrane ADA activity decreased from 1,202 ± 80 to 900 ± 50 mU/mg protein in the ANG II-treated rats ( P< 0.05), as well as in their protein and mRNA expression. Despite the adenosine elevation, A1and A2breceptor protein did not change; in contrast, downregulation was observed in A2areceptor and upregulation in A3receptor. A similar pattern was found in the cortex and in the medulla; mRNA significantly decreased only in the A3receptor in both segments. These results suggest that the elevation of renal tissue and interstitial adenosine contributes to the renal vasoconstriction observed in the ANG II-induced hypertension and that it is mediated by a decrease in the activity and expression of ADA, increased production of adenosine, and an induced imbalance in adenosine receptors.

Publisher

American Physiological Society

Subject

Physiology

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3