Cationic Amino Acids Involved in Dicarboxylate Binding of the Flounder Renal Organic Anion Transporter

Author:

WOLFF NATASCHA A.,GRÜNWALD BETTINA,FRIEDRICH BJÖRN,LANG FLORIAN,GODEHARDT STEFAN,BURCKHARDT GERHARD

Abstract

Abstract. Three conserved cationic amino acids in predicted transmembrane domains 1, 8, and 11, respectively, of the flounder renal organic anion transporter, fROAT, were changed by site-directed mutagenesis and the resulting mutants functionally characterized inXenopus laevisoocytes. Uptake ofp-aminohippurate (PAH) in oocytes that expressed mutant H34I, K394A, or R478D was markedly reduced compared with oocytes that expressed wild-type fROAT, but was still several-fold higher than that in water-injected control oocytes. Immunocytochemically, no decrease in cell surface expression of the mutants could be detected. Only mutant R478D appeared to have a lower PAH affinity than the wild type. Similar to wild-type—dependent PAH transport, uptake induced by mutant H34I was sensitive to glutarate (GA) cis-inhibition. In contrast, mutants K394A and R478D could not be significantly affected by up to 10 mM GA, although the cRNA-dependent PAH uptake could still be almost completely suppressed by probenecid. Moreover, again in contrast to the wild type, neither PAH influx nor PAH efflux mediated by these two mutants could be trans-stimulated by GA, nor did they induce GA transport. These data suggest that amino acids K394 and R478 in fROAT are required for dicarboxylate binding and PAH/dicarboxylate exchange.

Publisher

American Society of Nephrology (ASN)

Subject

Nephrology,General Medicine

Reference38 articles.

1. Burckhardt G, Pritchard JB: Organic anion and cation antiporters. In: The Kidney: Physiology and Pathophysiology, 3rd ed., edited by Seldin DW, Giebisch G, Philadelphia, Lippincott Williams and Wilkins, 2000, pp 193-222

2. The Antiviral Nucleotide Analogs Cidofovir and Adefovir Are Novel Substrates for Human and Rat Renal Organic Anion Transporter 1

3. The multispecific organic anion transporter (OAT) family

4. VEGF expression in an osteoblast-like cell line is regulated by a hypoxia response mechanism

Cited by 35 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3