Differential interaction of dicarboxylates with human sodium-dicarboxylate cotransporter 3 and organic anion transporters 1 and 3

Author:

Kaufhold Marcel1,Schulz Katharina1,Breljak Davorka2,Gupta Shivangi1,Henjakovic Maja1,Krick Wolfgang1,Hagos Yohannes1,Sabolic Ivan2,Burckhardt Birgitta C.1,Burckhardt Gerhard1

Affiliation:

1. Abteilung Vegetative Physiologie und Pathophysiologie, Universitätsmedizin Göttingen, Göttingen, Germany; and

2. Unit of Molecular Toxicology, Institute for Medical Research and Occupational Health, Zagreb, Croatia

Abstract

Organic anions are taken up from the blood into proximal tubule cells by organic anion transporters 1 and 3 (OAT1 and OAT3) in exchange for dicarboxylates. The released dicarboxylates are recycled by the sodium dicarboxylate cotransporter 3 (NaDC3). In this study, we tested the substrate specificities of human NaDC3, OAT1, and OAT3 to identify those dicarboxylates for which the three cooperating transporters have common high affinities. All transporters were stably expressed in HEK293 cells, and extracellularly added dicarboxylates were used as inhibitors of [14C]succinate (NaDC3), p-[3H]aminohippurate (OAT1), or [3H]estrone-3-sulfate (OAT3) uptake. Human NaDC3 was stably expressed as proven by immunochemical methods and by sodium-dependent uptake of succinate ( K0.5for sodium activation, 44.6 mM; Hill coefficient, 2.1; Kmfor succinate, 18 μM). NaDC3 was best inhibited by succinate (IC5025.5 μM) and less by α-ketoglutarate (IC5069.2 μM) and fumarate (IC5095.2 μM). Dicarboxylates with longer carbon backbones (adipate, pimelate, suberate) had low or no affinity for NaDC3. OAT1 exhibited the highest affinity for glutarate, α-ketoglutarate, and adipate (IC50between 3.3 and 6.2 μM), followed by pimelate (18.6 μM) and suberate (19.3 μM). The affinity of OAT1 to succinate and fumarate was low. OAT3 showed the same dicarboxylate selectivity with ∼13-fold higher IC50values compared with OAT1. The data 1) reveal α-ketoglutarate as a common high-affinity substrate of NaDC3, OAT1, and OAT3 and 2) suggest potentially similar molecular structures of the binding sites in OAT1 and OAT3 for dicarboxylates.

Publisher

American Physiological Society

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3