Tubular Epithelial Cell HMGB1 Promotes AKI-CKD Transition by Sensitizing Cycling Tubular Cells to Oxidative Stress: A Rationale for Targeting HMGB1 during AKI Recovery

Author:

Zhao Zhi Bo1,Marschner Julian A.1,Iwakura Takamasa1,Li Chenyu1,Motrapu Manga1,Kuang Meisi1,Popper Bastian2,Linkermann Andreas3,Klocke Jan4,Enghard Philipp4,Muto Yoshiharu5,Humphreys Benjamin D.56,Harris Helena Erlandsson7,Romagnani Paola8,Anders Hans-Joachim1

Affiliation:

1. Nephrologisches Zentrum, Medizinische Klinik und Poliklinik IV, Klinikum der Universität München, LMU München, Munich, Germany

2. Biomedical Center, Core Facility Animal Models, LMU München, Munich, Germany

3. Division of Nephrology, Department of Internal Medicine 3, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany

4. Department of Nephrology and Intensive Care, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany

5. Division of Nephrology, Department of Medicine, Washington University in St. Louis, St. Louis, Missouri

6. Department of Developmental Biology, Washington University in St. Louis, St. Louis, Missouri

7. Departments of Rheumatology and of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden

8. Department of Experimental and Biomedical Sciences "Mario Serio" and Nephrology and Dialysis Unit, Meyer Children's University Hospital, Florence, Italy

Abstract

Significance Statement Cells undergoing necrosis release extracellular high mobility group box (HMGB)-1, which triggers sterile inflammation upon AKI in mice. Neither deletion of HMGB1 from tubular epithelial cells, nor HMGB1 antagonism with small molecules, affects initial ischemic tubular necrosis and immediate GFR loss upon unilateral ischemia/reperfusion injury (IRI). On the contrary, tubular cell-specific HMGB1 deficiency, and even late-onset pharmacological HMGB1 inhibition, increased functional and structural recovery from AKI, indicating that intracellular HMGB1 partially counters the effects of extracellular HMGB1. In vitro studies indicate that intracellular HMGB1 decreases resilience of tubular cells from prolonged ischemic stress, as in unilateral IRI. Intracellular HMGB1 is a potential target to enhance kidney regeneration and to improve long-term prognosis in AKI. Background Late diagnosis is a hurdle for treatment of AKI, but targeting AKI-CKD transition may improve outcomes. High mobility group box-1 (HMGB1) is a nuclear regulator of transcription and a driver of necroinflammation in AKI. We hypothesized that HMGB1 would also modulate AKI-CKD transition in other ways. Methods We conducted single-cell transcriptome analysis of human and mouse AKI and mouse in vivo and in vitro studies with tubular cell-specific depletion of Hmgb1 and HMGB1 antagonists. Results HMGB1 was ubiquitously expressed in kidney cells. Preemptive HMGB1 antagonism with glycyrrhizic acid (Gly) and ethyl pyruvate (EP) did not affect postischemic AKI but attenuated AKI-CKD transition in a model of persistent kidney hypoxia. Consistently, tubular Hmgb1 depletion in Pax8 rtTA, TetO Cre, Hmgb1 fl/fl mice did not protect from AKI, but from AKI-CKD transition. In vitro studies confirmed that absence of HMGB1 or HMGB1 inhibition with Gly and EP does not affect ischemic necrosis of growth-arrested differentiated tubular cells but increased the resilience of cycling tubular cells that survived the acute injury to oxidative stress. This effect persisted when neutralizing extracellular HMGB1 with 2G7. Consistently, late-onset HMGB1 blockade with EP started after the peak of ischemic AKI in mice prevented AKI-CKD transition, even when 2G7 blocked extracellular HMGB1. Conclusion Treatment of AKI could become feasible when (1) focusing on long-term outcomes of AKI; (2) targeting AKI-CKD transition with drugs initiated after the AKI peak; and (3) targeting with drugs that block HMGB1 in intracellular and extracellular compartments.

Publisher

Ovid Technologies (Wolters Kluwer Health)

Subject

Nephrology,General Medicine

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3