Formalization of the Task of Creating a Mathematical Model of Combined Wastewater Treatment Processes

Author:

Alekseevsky D.G.,Chernysh Ye.Yu.,Shtepa V.N.

Abstract

This paper focuses on the formation approach to formalize the mathematical modeling of wastewater treatment processes for further forming decision support systems for wastewater treatment facilities management on such a theoretical basis. To create an experimental model of formalization of modeling problems, research was conducted on activated sludge from municipal sewage treatment facilities by introducing an oxidant (H2O2) during standard operation of wastewater treatment facilities and introducing a toxicant (sulfur compounds). It was determined that under conditionally standard conditions, the influence of the oxidant is negative: exceeding technological standards of the concentration of dissolved oxygen in water solutions (3.0–13,7 mg/l), low water column transparency (1.4–1.6 cm), higher concentrations of ammonia nitrogen and phosphorus. With the appearance of a toxicant in the form of reduced sulfur compounds (sulfide ions and hydrogen sulfide 1.4–2.8 mg/l), on the contrary, the positive effect of H2O2 on biological water treatment processes was determined: the concentration of dissolved oxygen increases to 3.4 mg/l and the swelling of activated sludge stops. In this case, using a simplified scheme of expert evaluation as a global quality criterion of the biological stage management process of water treatment for rapid assessment of the vitality of activated sludge is justified. As parameters available for direct automatic measurement, it was proposed to use ORP and pH approximated by the regression equation. Also, a conditional scheme of the decision support system for water treatment management was proposed, which will provide two-level hierarchical control: situational and operational in real-time with a preventive response to emergencies; tactical with daily, at least daily, forecasting of the treatment plants.

Publisher

Sumy State University

Subject

General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3