DEVELOPMENT OF CONTROL AND FORECASTING SYSTEM FOR THE EFFECTIVE FUNCTIONING OF BIOLOGICAL WASTEWATER TREATMENT PLANTS IN THE CITY OF VITEBSK BASED ON NEURAL NETWORKS

Author:

HALUZA A.1,SHTEPA V.2,YUSHENKO V.3

Affiliation:

1. Vitebsk Regional Committee of Natural Resources and Environmental Protection

2. Polessky State University

3. Euphrosyne Polotskaya State University of Polotsk

Abstract

The relevance of implementing modern approaches to improving the efficiency of sewage treatment facilities has been analyzed. Functional modeling of biological wastewater treatment has been performed using the IDEF0 methodology. It has allowed the identification of the nomenclature of input and control factors, mechanisms, and the results of corre-sponding technological processes. A block diagram of information flows in the context of control of wastewater treatment facilities is constructed. Correlation analysis of the relationships between wastewater quality parameters has been con-ducted, and expert opinions have justified the further use of neural networks for modeling the processes of purification of aqueous solutions. Neural model has been built on the Deductor analytical platform for forecasting the functioning of biological wastewater treatment plants.

Publisher

Polotsk State University

Reference6 articles.

1. Sharshunov, V.A. (2020). Ochistka stochnykh vod i utilizatsiya ikh otkhodov: posobie. Minsk: Misanta. (In Russ.).

2. Khentse, M., Armoes, P., Lya-Kur-Yansen, I. & Arvan, E. (2009). Ochistka stochnykh vod, biologicheskie i khimicheskie protsessy. Moscow: Mir. (In Russ.).

3. Zhmur, N.S. (2003). Tekhnologicheskie i biokhimicheskie protsessy ochistki stochnykh vod v sooruzheniyakh s aerotenkami. Moscow: Akvaros. (In Russ.).

4. Kruglov, V.V. & Borisov, V.V. (2002). Iskusstvennye neironnye seti. Teoriya i praktika. Moscow: Goryachaya liniya-Telekom. (In Russ.).

5. Shtepa, V.N., Zaets, N.A. & Alekseevskii, D.G. (2022). Adaptivnye resheniya intellektual'nogo upravleniya ochistnymi sooruzheniyami. In V.O. Kitikov (Eds.). Novye metody i tekhnologii v vodosnabzhenii i vodootvedenii: sb. tr. (281–287). Minsk: BGTU. (In Russ.).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3