From SARS-CoV-2 infection to COVID-19 morbidity: an in silico projection of virion flow rates to the lower airway via nasopharyngeal fluid boluses

Author:

Basu S.ORCID,Akash M.M.H.,Hochberg N.S.,Senior B.A.,Joseph-McCarthy D.,Chakravarty A.

Abstract

Background: While the nasopharynx is initially the dominant upper airway infection site for SARS-CoV-2, the physiologic mechanism launching the infection at the lower airway is still not well-understood. Based on the rapidity of infection progression to the lungs, it has been hypothesized that the nasopharynx may be acting as the primary seeding zone for subsequent contamination of the lower airway via aspiration of virus-laden boluses of nasopharyngeal fluids. Methodology: To examine the plausibility of the aspiration-driven mechanism, we have computationally tracked the inhalation process in three anatomic airway reconstructions and have quantified the nasopharyngeal liquid volume transmitted to the lower airspace during each aspiration. Results: Extending the numerical trends on aspiration volume to earlier records on aspiration frequencies indicates a total aspirated nasopharyngeal liquid volume of 0.3 – 0.76 ml/day. Subsequently, for mean sputum viral load, our modeling projects that the number of virions reaching the lower airway will range over 2.1×106 – 5.3×106 /day; for peak viral load, the corresponding number hovers between 7.1×108 – 1.8×109. Conclusions: The virion transmission findings fill in a key piece of the mechanistic puzzle on the systemic progression of SARS-CoV-2, and subjectively point to health conditions like dysphagia, with proclivity to increased aspiration, as some of the potential underlying risk factors for aggressive lung infections.

Publisher

Stichting Nase

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3