Abstract
This paper reviews the physical, neural, and cognitive phenotypes of spina bifida myelomeningocele (SBM), a non-lethal neural tube defect that is the most common congenital birth defect affecting the central nervous system. After reviewing the physical and neural phenotypes, we explain how these variations affect in a principled manner variation in the cognitive phenotype of SBM. The cognitive phenotype represents a modal profile with strengths in associative, rule-based learning and weaknesses in assembled, integrative processes. This phenotype is related to core deficits in timing, attention, and movement that arise early in development because of brain malformations involving the cerebellum, midbrain, and corpus callosum. The variability of outcomes in SBM is also related to the level of spinal cord lesion, secondary effects of hydrocephalus and its treatment, and the psychosocial environment. Early interventions and comprehensive interventions that take advantage of our understanding of the modal cognitive phenotype modal profile and the variations that occur are important in helping people with SBM maximize their cognitive development, adaptive functions, and quality of life.
Funder
Eunice Kennedy Shriver National Institute of Child Health and Human Development
Publisher
Federal State-Financed Educational Institution of Higher Education Moscow State University of Psychology and Education
Reference39 articles.
1. Barkovich A.J., Norman D. Anomalies of the corpus callosum: Correlation with further anomalies of the brain. American Journal of Neuroradiology, 1988. Vol. 9, no. 3, pp. 493â501.
2. Barkovich A.J., Raybaud C. Pediatric neuroimaging (5th Ed.). Philadelphia, PA: Lippincott Williams & Wilkins, 2012. 1144 p.
3. Bowman R.M., McLone D.G. Neurosurgical management of spina bifida: Research issues. Developmental Disabilities Research Review, 2010. Vol. 16, no. 1, pp. 82â87. DOI: 10.1002/ddrr.100
4. Bradley K.A., Juranek J., Romanowska-Pawliczek A. et al. Plasticity of interhemispheric temporal lobe connections due to early disruption of corpus callosum development in spina bifida myelomeningocele. Brain Connectivity, 2016. Vol. 6, no. 3, pp. 238â248. DOI: 10.1089/brain.2015.0387
5. Brewer V.R., Fletcher J.M., Hiscock M. et al. Attention processes in children with shunted hydrocephalus versus attention deficit/hyperactivity disorder. Neuropsychology, 2001. Vol. 15, no. 2, pp. 185â198. DOI: 10.1037//0894-4105.15.2.185
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献