Identifying patterns in the fatty-acid composition of safflower depending on agroclimatic conditions

Author:

Tultabayev MukhtarORCID,Chomanov UrishbayORCID,Tultabayeva TamaraORCID,Shoman AruzhanORCID,Dodaev KuchkarORCID,Azimov UtkirORCID,Zhumanova UmytORCID

Abstract

The object of the study reported in this paper is to establish a dependence of the fatty acid composition of the fast-growing annual plant safflower on the agroclimatic cultivating conditions. The growth rate of safflower and the characteristics of the extracted oil are highly dependent on external temperature and moisture. At low temperatures, for example, the growth of safflower is significantly inhibited. With an increase in temperature and the length of daylight, the central stem begins to branch while growing faster. Flowering is mainly affected by the length of daylight. The period from the end of flowering to maturity is typically 28‒30 days. However, the total ripening period of the crop depends on the variety, location, sowing time, and agro-climatic cultivating conditions. The need for water increases significantly during the flowering period of safflower, which ultimately affects the indicators of the fatty acid composition and yield. At the same time, safflower is sensitive to moisture in terms of disease. In case of excess water, it is subject to root rot. In addition, frequent rains and high humidity after ripening can provoke the germination of seeds on the head. Hence, it follows that in order to obtain a high yield with the specified characteristics of the fatty acid composition of safflower oil, it is necessary to take into consideration the quantitative indicators of moisture and its seasonality, as well as the temperature regime during the growing season. The study was conducted using arid or semi-arid, sharply continental Central Asia with its hot summers and cold winters as an example. The dependence of the physicochemical parameters of plant-derived oils on agroclimatic indicators has been established. The reported results and conclusions will allow farmers to predict the yield of oilseeds with specified characteristics depending on the changing climatic parameters

Publisher

Private Company Technology Center

Subject

Applied Mathematics,Electrical and Electronic Engineering,Management of Technology and Innovation,Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Energy Engineering and Power Technology,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3