Improving the mechanical-mathematical model of grain mass separation in a fluidized bed

Author:

Bredykhin VadymORCID,Gurskyi PetroORCID,Alfyorov OleksiyORCID,Bredykhina KhrystynaORCID,Pak AndreyORCID

Abstract

This paper has substantiated the prospect of modeling the processes of separating grain mass into fractions as one of the tasks in the production of high-quality seed material. It has been determined that this could optimize the parameters of separation processes and design new working surfaces for its implementation. It is noted that modeling should take into consideration the influence of the structural and kinematic parameters of grain cleaning machines, the physical and mechanical properties of raw materials, the intralayer processes and forces. The reported theoretical study has improved the mechanical-mathematical model of grain mass separation in a pseudo-fluidized bed according to its density. The model establishes a relationship between the effective coefficient of dynamic viscosity and the density of particles in the discrete and continuous phases and the volumetric concentration of discrete phase particles. At the same time, the porosity of a fluidized bed has been accounted for, as well as the longitudinal and transverse angles of inclination of the base surface to the horizontal plane, the amplitude and frequency of oscillations of the particles of the continuous phase; the direction angle of oscillations relative to the perpendicular to the base surface. The adequacy of the improved mechanical-mathematical model has been confirmed by comparing the experimental and theoretical results of grain mass fractionation modeling. It was found that the differences in the density values of the separated fractions of GM did not exceed 7...8 %, that is, they were within the margin of error. It has been established that the improved model of grain mass separation in a fluidized bed could be used to determine the rational values for the parameters of a pneumatic sorting table that is used for the fractionation of the corresponding seed material. The initial data, in this case, are the density of the continuous and solid phases of grain mass, the friction coefficient of the seeds, and the equivalent radius of the particle. The result of modeling is the rational values of the amplitude and oscillation frequency of the working surface of the pneumatic sorting table, and the angles of inclination of the working surface

Publisher

Private Company Technology Center

Subject

Applied Mathematics,Electrical and Electronic Engineering,Management of Technology and Innovation,Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Energy Engineering and Power Technology,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3