Abstract
The question of whether machine learning is real learning is ambiguous, because the term “real learning” can be understood in two different ways. Firstly, it can be understood as learning that actually exists and is, as such, opposed to something that only appears to be learning, or is misleadingly called learning despite being something else, something that is different from learning. Secondly, it can be understood as the highest form of human learning, which presupposes that an agent understands what is learned and acquires new knowledge as a justified true belief. As a result, there are also two opposite answers to the question of whether machine learning is real learning. Some experts in the field of machine learning, which is a subset of artificial intelligence, claim that machine learning is in fact learning and not something else, while some others – including philosophers – reject the claim that machine learning is real learning. For them, real learning means the highest form of human learning. The main purpose of this paper is to present and discuss, very briefly and in a simplifying manner, certain interpretations of human and machine learning, on the one hand, and the problem of real learning, on the other, in order to make it clearer that the answer to the question of whether machine learning is real learning depends on the definition of learning.
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献