Classification model for student dropouts using machine learning: A case study

Author:

Villarreal-Torres Henry,Ángeles-Morales Julio,Marín-Rodriguez William,Andrade-Girón Daniel,Cano-Mejía Jenny,Mejía-Murillo Carmen,Flores-Reyes Gumercindo,Palomino-Márquez Manuel

Abstract

Information and communication technologies have been fulfilling a highly relevant role in the different fields of knowledge, addressing problems in various disciplines; there is an increased capacity to identify patterns and anomalies in an organization's data using data mining; In this context, the study aimed to develop a classification model for student dropout, applying machine learning with the autoML method of the H2O.ai framework; the dimensionality of the socioeconomic and academic characteristics has been taken into account, with the purpose that the directors make reasonable decisions to counteract the abandonment of the students in the study programs. The methodology used was of a technological type, purposeful level, incremental innovation, temporal scope, and synchronous; data collection was prospective. For this, a 20-item questionnaire was applied to 237 students enrolled in the master's degree programs in the education of the Graduate School. The research resulted in a supervised machine learning model, Gradient Reinforcement Machine (GBM), to classify student dropout, thus identifying the main associated factors that influence dropout, obtaining a Gini coefficient of 92.20%, AUC of 96.10% and a LogLoss of 24.24% representing a model with efficient performance.

Publisher

European Alliance for Innovation n.o.

Subject

Information Systems and Management,Computer Networks and Communications,Computer Science Applications,Hardware and Architecture,Information Systems,Software

Reference73 articles.

1. Ajgaonkar, S. (2022). Practical Automated Machine Learning Using H2O.ai: Discover the power of automated machine learning, from experimentation through to deployment to production. Packt Publishing.

2. Andrade-Girón, D., Carreño-Cisneros, E., Mejía-Dominguez, C., Marín-Rodriguez, W., & Villarreal-Torres, H. (2023). Comparación de Algoritmos Machine Learning para la Predicción de Pacientes con Sospecha de COVID-19. Salud, Ciencia Y Tecnología, 3, 336. https://doi.org/10.56294/saludcyt2023336

3. Anzanello, M. J., & Fogliatto, F. S. (2011). Learning curve models and applications: Literature review and research directions. International Journal of Industrial Ergonomics, 41(5), 573–583. https://doi.org/10.1016/j.ergon.2011.05.001

4. Aragón-Royón, F., Jiménez-Vílchez, A., Arauzo-Azofra, A. & Benitez, J. (2020). “FSinR: an exhaustive package for feature selection.” arXiv e-prints, arXiv: 2002. 10330. 2002. 10330, https://arxiv.org/abs/2002.10330.

5. AutoML. (2022, 15 de diciembre). AutoML | Home. https://www.automl.org/automl/

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3