Central α2‐adrenergic mechanisms regulate human sympathetic neuronal discharge strategies

Author:

Klassen Stephen A.1,Limberg Jacqueline K.2,Harvey Ronée E.3,Wiggins Chad C.4,Iannarelli Nathaniel J.1,Senefeld Jonathon W.5,Nicholson Wayne T.3,Curry Timothy B.3,Joyner Michael J.3,Shoemaker J. Kevin6,Baker Sarah E.3

Affiliation:

1. Sympathetic Neurocirculatory Regulation Laboratory Department of Kinesiology Brock University St Catharines ON Canada

2. Department of Nutrition and Exercise Physiology University of Missouri Columbia MO USA

3. Department of Anesthesiology and Perioperative Medicine Mayo Clinic Rochester MN USA

4. Department of Kinesiology Michigan State University East Lansing MI USA

5. Department of Health and Kinesiology, Beckman Institute for Advanced Science and Technology, University of Illinois Urbana‐Champaign University of Illinois at Urbana‐Champaign Champaign IL USA

6. School of Kinesiology, Department of Physiology and Pharmacology University of Western Ontario London ON Canada

Abstract

AbstractThe present study investigated the impact of central α2‐adrenergic mechanisms on sympathetic action potential (AP) discharge, recruitment and latency strategies. We used the microneurographic technique to record muscle sympathetic nerve activity and a continuous wavelet transform to investigate postganglionic sympathetic AP firing during a baseline condition and an infusion of a α2‐adrenergic receptor agonist, dexmedetomidine (10 min loading infusion of 0.225 µg kg−1; maintenance infusion of 0.1–0.5 µg kg h−1) in eight healthy individuals (28 ± 7 years, five females). Dexmedetomidine reduced mean pressure (92 ± 7 to 80 ± 8 mmHg, P < 0.001) but did not alter heart rate (61 ± 13 to 60 ± 14 bpm; P = 0.748). Dexmedetomidine reduced sympathetic AP discharge (126 ± 73 to 27 ± 24 AP 100 beats−1, P = 0.003) most strongly for medium‐sized APs (normalized cluster 2: 21 ± 10 to 5 ± 5 AP 100 beats−1; P < 0.001). Dexmedetomidine progressively de‐recruited sympathetic APs beginning with the largest AP clusters (12 ± 3 to 7 ± 2 clusters, P = 0.002). Despite de‐recruiting large AP clusters with shorter latencies, dexmedetomidine reduced AP latency across remaining clusters (1.18 ± 0.12 to 1.13 ± 0.13 s, P = 0.002). A subset of six participants performed a Valsalva manoeuvre (20 s, 40 mmHg) during baseline and the dexmedetomidine infusion. Compared to baseline, AP discharge (Δ 361 ± 292 to Δ 113 ± 155 AP 100 beats−1, P = 0.011) and AP cluster recruitment elicited by the Valsalva manoeuvre were lower during dexmedetomidine (Δ 2 ± 1 to Δ 0 ± 2 AP clusters, P = 0.041). The reduction in sympathetic AP latency elicited by the Valsalva manoeuvre was not affected by dexmedetomidine (Δ –0.09 ± 0.07 to Δ –0.07 ± 0.14 s, P = 0.606). Dexmedetomidine reduced baroreflex gain, most strongly for medium‐sized APs (normalized cluster 2: –6.0 ± 5 to –1.6 ± 2 % mmHg−1; P = 0.008). These data suggest that α2‐adrenergic mechanisms within the central nervous system modulate sympathetic postganglionic neuronal discharge, recruitment and latency strategies in humans. imageKey points Sympathetic postganglionic neuronal subpopulations innervating the human circulation exhibit complex patterns of discharge, recruitment and latency. However, the central neural mechanisms governing sympathetic postganglionic discharge remain unclear. This microneurographic study investigated the impact of a dexmedetomidine infusion (α2‐adrenergic receptor agonist) on muscle sympathetic postganglionic action potential (AP) discharge, recruitment and latency patterns. Dexmedetomidine infusion inhibited the recruitment of large and fast conducting sympathetic APs and attenuated the discharge of medium sized sympathetic APs that fired during resting conditions and the Valsalva manoeuvre. Dexmedetomidine infusion elicited shorter sympathetic AP latencies during resting conditions but did not affect the reductions in latency that occurred during the Valsalva manoeuvre. These data suggest that α2‐adrenergic mechanisms within the central nervous system modulate sympathetic postganglionic neuronal discharge, recruitment and latency strategies in humans.

Funder

National Institute of Diabetes and Digestive and Kidney Diseases

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3