Single vesicle analysis reveals the release of tetraspanin positive extracellular vesicles into circulation with high intensity intermittent exercise

Author:

McIlvenna Luke C.12,Parker Hannah‐Jade13,Seabright Alex P.1,Sale Benedict1,Anghileri Genevieve14,Weaver Samuel R.C.1,Lucas Samuel J.E.1ORCID,Whitham Martin13ORCID

Affiliation:

1. School of Sport, Exercise and Rehabilitation Sciences University of Birmingham Birmingham UK

2. Epigenetics & Cellular Senescence Group, Blizard Institute, Barts and the London School of Medicine and Dentistry Queen Mary University of London London UK

3. MRC‐Versus Arthritis Centre for Musculoskeletal Ageing Research University of Birmingham Birmingham UK

4. School of Sport, Exercise and Health Sciences Loughborough University Loughborough UK

Abstract

AbstractSmall extracellular vesicles (sEVs) are released from all cell types and participate in the intercellular exchange of proteins, lipids, metabolites and nucleic acids. Proteomic, flow cytometry and nanoparticle tracking analyses suggest sEVs are released into circulation with exercise. However, interpretation of these data may be influenced by sources of bias introduced by different analytical approaches. Seven healthy participants carried out a high intensity intermittent training (HIIT) cycle protocol consisting of 4 × 30 s at a work‐rate corresponding to 200% of individual max power (watts) interspersed by 4.5 min of active recovery. EDTA‐treated blood was collected before and immediately after the final effort. Platelet‐poor (PPP) and platelet‐free (PFP) plasma was derived by one or two centrifugal spins at 2500 g, respectively (15 min, room temperature). Platelets were counted on an automated haemocytometer. Plasma samples were assessed with the Exoview R100 platform, which immobilises sEVs expressing common tetraspanin markers CD9, CD63, CD81 and CD41a on microfluidic chips and with the aid of fluorescence imaging, counts their abundance at a single sEV resolution, importantly, without a pre‐isolation step. There was a lower number of platelets in the PFP than PPP, which was associated with a lower number of CD9, CD63 and CD41a positive sEVs. HIIT induced an increase in fluorescence counts in CD9, CD63 and CD81 positive sEVs in both PPP and PFP. These data support the concept that sEVs are released into circulation with exercise. Furthermore, platelet‐free plasma is the preferred, representative analyte to study sEV dynamics and phenotype during exercise. imageKey points Small extracellular vesicles (sEV) are nano‐sized particles containing protein, metabolites, lipid and RNA that can be transferred from cell to cell. Previous findings implicate that sEVs are released into circulation with exhaustive, aerobic exercise, but since there is no gold standard method to isolate sEVs, these findings may be subject to bias introduced by different approaches. Here, we use a novel method to immobilise and image sEVs, at single‐vesicle resolution, to show sEVs are released into circulation with high intensity intermittent exercise. Since platelet depletion of plasma results in a reduction in sEVs, platelet‐free plasma is the preferred analyte to examine sEV dynamics and phenotype in the context of exercise.

Publisher

Wiley

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3