Hepatic glycogenolysis and hypometabolism induced by chemogenetic stimulation of C1 neurons

Author:

Abe Chikara12ORCID,Katayama Chikako1,Bazek Murat1,Ohbayashi Kento3,Horii Kazuhiro1,Tanida Mamoru4,Nin Fumiaki1,Iwasaki Yusaku3

Affiliation:

1. Department of Physiology Gifu University Graduate School of Medicine Gifu Japan

2. Preemptive Food Research Center (PFRC) Gifu University Institute for Advanced Study Gifu Japan

3. Laboratory of Animal Science, Graduate School of Life and Environmental Sciences Kyoto Prefectural University Kyoto Japan

4. Department of Physiology II Kanazawa Medical University Ishikawa Japan

Abstract

AbstractThe precise regulation of blood glucose levels is indispensable for maintaining physiological functions. C1 neurons determine the outflow of the autonomic nervous and endocrine systems to maintain blood glucose levels in the body. In contrast, activation of C1 neurons induces a decrease in activity, suggesting that hypoactivity also participates in maintaining blood glucose levels. To examine this, we evaluated both glycogenolysis and hypometabolism induced by the selective activation of C1 neurons. We used DbhCre/0 mice expressing receptors for chemogenetic tools in C1 neurons, resulting from microinjection of the viral vector. C1 neurons were activated by intraperitoneal injection of clozapine N‐oxide (CNO). The chemogenetic activation of C1 neurons significantly decreased body temperature, oxygen consumption and carbon dioxide production. On the other hand, blood glucose levels were increased by activation of C1 neurons 2 h after CNO administration, even in the fasting state. In this situation, an increase in glucagon and corticosterone levels was observed, while hepatic glycogen content decreased significantly. Plasma insulin levels were not changed by the activation of C1 neurons despite the increase in blood glucose level. Furthermore, adrenal sympathetic nerve activity was significantly increased by the activation of C1 neurons, and plasma catecholamine levels increased significantly. In conclusion, the selective activation of C1 neurons using chemogenetic tools induced an increase in blood glucose levels, probably as a result of hepatic glycogenolysis and hypometabolism. imageKey points Chemogenetic activation of C1 neurons in medulla oblongata decreased body temperature. Oxygen consumption and carbon dioxide production were decreased by chemogenetic activation of C1 neurons in medulla oblongata. Blood glucose levels were increased by chemogenetic activation of C1 neurons in medulla oblongata. Chemogenetic activation of C1 neurons in medulla oblongata increased glucagon, corticosterone and catecholamine levels in plasma. An increase in blood glucose levels by activation of C1 neurons occurred due to the combined effect of hepatic glycogenolysis and hypometabolism.

Funder

Japan Society for the Promotion of Science

Takeda Science Foundation

Mishima Kaiun Memorial Foundation

Salt Science Research Foundation

Smoking Research Foundation

Publisher

Wiley

Subject

Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3