Acute hypoxia impairs posterior cerebral bioenergetics and memory in man

Author:

Ando Soichi1ORCID,Tsukamoto Hayato23ORCID,Stacey Benjamin S.2ORCID,Washio Takuro4ORCID,Owens Thomas S.2ORCID,Calverley Thomas A.2,Fall Lewis2ORCID,Marley Christopher J.2ORCID,Iannetelli Angelo2,Hashimoto Takeshi5,Ogoh Shigehiko24ORCID,Bailey Damian M.2ORCID

Affiliation:

1. Graduate School of Informatics and Engineering The University of Electro‐Communications Tokyo Japan

2. Neurovascular Research Laboratory, Faculty of Life Sciences and Education University of South Wales Pontypridd UK

3. Faculty of Sports Science Waseda University Saitama Japan

4. Department of Biomedical Engineering Toyo University Kawagoe Saitama Japan

5. Faculty of Sport and Health Science Ritsumeikan University Shiga Japan

Abstract

AbstractHypoxia has the potential to impair cognitive function; however, it is still uncertain which cognitive domains are adversely affected. We examined the effects of acute hypoxia (∼7 h) on central executive (Go/No‐Go) and non‐executive (memory) tasks and the extent to which impairment was potentially related to regional cerebral blood flow and oxygen delivery (CDO2). Twelve male participants performed cognitive tasks following 0, 2, 4 and 6 h of passive exposure to both normoxia and hypoxia (12% O2), in a randomized block cross‐over single‐blinded design. Middle cerebral artery (MCA) and posterior cerebral artery (PCA) blood velocities and corresponding CDO2 were determined using bilateral transcranial Doppler ultrasound. In hypoxia, MCA DO2 was reduced during the Go/No‐Go task (P = 0.010 vs. normoxia, main effect), and PCA DO2 was attenuated during memorization (P = 0.005 vs. normoxia) and recall components (P = 0.002 vs. normoxia) in the memory task. The accuracy of the memory task was also impaired in hypoxia (P = 0.049 vs. normoxia). In contrast, hypoxia failed to alter reaction time (P = 0.19 vs. normoxia) or accuracy (P = 0.20 vs. normoxia) during the Go/No‐Go task, indicating that selective attention and response inhibition were preserved. Hypoxia did not affect cerebral blood flow or corresponding CDO2 responses to cognitive activity (P > 0.05 vs. normoxia). Collectively, these findings highlight the differential sensitivity of cognitive domains, with memory being selectively vulnerable in hypoxia.

Funder

Japan Society for the Promotion of Science

Publisher

Wiley

Subject

Physiology,Physiology (medical),Nutrition and Dietetics,Physiology,Physiology (medical),Nutrition and Dietetics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3