Abstract
Abstract
Turbulent thermal convection is characterized by the formation of large-scale structures and strong spatial inhomogeneity. This work addresses the relative heat transport contributions of the large-scale plume ejecting vs. plume impacting zones in turbulent Rayleigh-Bénard convection. Based on direct numerical simulations of the two dimensional (2-D) problem, we show the existence of a crossover in the wall heat transport from initially impacting dominated to ultimately ejecting dominated at
. This is consistent with the trends observed in 3-D convection at lower Ra, and we therefore expect a similar crossover to also occur there. We identify the development of a turbulent mixing zone, connected to thermal plume emission, as the primary mechanism for the takeover. The mixing zone gradually extends vertically and horizontally, therefore becoming more and more dominant for the overall heat transfer.
Subject
General Physics and Astronomy
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献