Oscillatory large-scale circulation in liquid-metal thermal convection and its structural unit

Author:

Teimurazov AndreiORCID,Singh SanjayORCID,Su SylvieORCID,Eckert SvenORCID,Shishkina OlgaORCID,Vogt TobiasORCID

Abstract

In Rayleigh–Bénard convection, the size of a flow domain and its aspect ratio $\varGamma$ (a ratio between the spatial length and height of the domain) affect the shape of the large-scale circulation. For some aspect ratios, the flow dynamics includes a three-dimensional oscillatory mode known as a jump rope vortex (JRV); however, the effects of varying aspect ratios on this mode are not well investigated. In this paper, we study these aspect ratio effects in liquid metals, for a low Prandtl number ${{Pr}}=0.03$ . Direct numerical simulations and experiments are carried out for a Rayleigh number range $2.9 \times 10^4 \leq {{Ra}} \leq 1.6 \times 10^6$ and square cuboid domains with $\varGamma =2$ , $2.5$ , $3$ and $5$ . Our study demonstrates that a repeating pattern of a JRV encountered at aspect ratio $\varGamma \approx 2.5$ is the basic structural unit that builds up to a lattice of interlaced JRVs at the largest aspect ratio. The size of the domain determines how many structural units are self-organised within the domain; the number of the realised units is expected to scale as $\varGamma ^2$ with sufficiently large and growing $\varGamma$ . We find the oscillatory modes for all investigated $\varGamma$ ; however, they are more pronounced for $\varGamma =2.5$ and $5$ . Future studies for large-aspect-ratio domains of different shapes would enhance our understanding of how the JRVs adjust and reorganise at such scaled-up geometries, and answer the question of whether they are indeed the smallest superstructure units.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,Applied Mathematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3