Predicting Occupation with Machine Learning from Turkish Tweets

Author:

MAYDA İslam1

Affiliation:

1. YILDIZ TEKNİK ÜNİVERSİTESİ

Abstract

With the spread of social media platforms and the rapid increase in the number of users, the amount of data produced in social media is growing rapidly. One of the goals of scientific studies to extract information from this data is occupation prediction. Social media users' occupation information can be used in many different areas, especially in smart suggestion systems. In this study, it is aimed to make occupation prediction using Turkish tweets. Within the scope of the study, an occupation dataset consisting of 25,000 Turkish tweets was created and shared publicly. Various preprocessing steps were applied on this dataset, and feature sets were extracted using both the words themselves and the word roots. In the tests, tweets were used both singularly and combined in groups of 5 and 10. In the experiments in which Support Vector Machine and Logistic Regression methods were applied, tests were repeated by feature selection. While the best result was obtained as 74.90% accuracy in the experiments with singular tweets, the best performances were reported as 96.20% accuracy in experiments with tweets combined in groups of 5, and 99.00% accuracy in experiments with tweets combined in groups of 10. It has been seen that the using of word roots in the tests has higher success than using the words themselves, and the feature selection generally increases the success. At the end of the study, these results were discussed and suggestions for future studies were presented.

Publisher

European Journal of Science and Technology

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference16 articles.

1. Akın, M. D., & Akın, A. A. (2007). Türk Dilleri İçin Açık Kaynaklı Doğal Dil İşleme Kütüphanesi: Zemberek. Elektrik Mühendisliği, 431, 38-44.

2. Chu, W., & Chiu, C. (2014, Aralık). Predicting Occupation from Single Facial Images. IEEE International Symposium on Multimedia, Taichung, Tayvan. https://doi.org/10.1109/ISM.2014.13

3. Chu, W., & Chiu, C. (2016). Predicting Occupation from Images by Combining Face and Body Context Information. ACM Transactions on Multimedia Computing, Communications, and Applications, 13(1), 1-21. https://doi.org/10.1145/3009911

4. Hu, T., Xiao, H., Luo, J., & Nguyen, T. T. (2016, Mayıs). What the Language You Tweet Says About Your Occupation. The Tenth International AAAI Conference on Web and Social Media (ICWSM), Köln, Almanya. https://www.aaai.org/ocs/index.php/ICWSM/ICWSM16/paper/view/13020

5. Huang, Y., Yu, L., Wang, X., & Cui, B. (2015). A multi-source integration framework for user occupation inference in social media systems. World Wide Web, 18, 1247-1267. https://doi.org/10.1007/s11280-014-0300-6

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3