Affiliation:
1. National Chung Cheng University
Abstract
Facial images embed age, gender, and other rich information that is implicitly related to occupation. In this work, we advocate that occupation prediction from a single facial image is a doable computer vision problem. We extract multilevel hand-crafted features associated with locality-constrained linear coding and convolutional neural network features as image occupation descriptors. To avoid the curse of dimensionality and overfitting, a boost strategy called multichannel SVM is used to integrate features from face and body. Intra- and interclass visual variations are jointly considered in the boosting framework to further improve performance. In the evaluation, we verify the effectiveness of predicting occupation from face and demonstrate promising performance obtained by combining face and body information. More importantly, our work further integrates deep features into the multichannel SVM framework and shows significantly better performance over the state of the art.
Publisher
Association for Computing Machinery (ACM)
Subject
Computer Networks and Communications,Hardware and Architecture
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献