Affiliation:
1. DÜZCE ÜNİVERSİTESİ
2. ABANT İZZET BAYSAL ÜNİVERSİTESİ
Abstract
Today, the increased use of the internet has become important in our lives and new communication technologies, social networks, e-commerce, online banking, and among other applications have a significant impact on the promotion and growth of business. In our study, we aimed to work with a large dataset and to achieve the best results in detecting malicious URL addresses using an artificial intelligence model. A 7-layer RNN model was used in the study, and two similar national and international datasets were combined and merged to create a big new dataset consisting of 579,112 URL addresses. Then, this new data set is divided into training and test sets. first data set was trained at the model and then the second data set was processed test. When this data set was processed in our model, we achieved a success rate of over 91%. This rate is a very good result of detecting malicious url addresses. Your contribution with this work is significant in developing more effective methods for detecting harmful sites as internet usage increases, parallel use of artificial intelligence models makes detection of such sites more effective and potentially assist users in protecting from various types of cyber-attacks is targeted.
Publisher
European Journal of Science and Technology
Subject
General Earth and Planetary Sciences,General Environmental Science
Reference17 articles.
1. Nora A. A. and Narmatha C (2022), A Systematic Approach for Malware URL Recognition, 2022 2nd International Conference on Computing and Information Technology (ICCIT) Jan. 25 - 27, 2022/ FCIT/UT/KSA.
2. M. Alsaedi, F. A. Ghaleb, F. Saeed, J. Ahmad and M. Alasli. (2022), Cyber Threat Intelligence-Based Malicious URL Detection Model Using Ensemble Learning, Sensors 2022, 22, 3373. https://doi.org/10.3390/ s22093373.
3. Bu, S.-J.; Kim, H.-J.(2022) , Optimized URL Feature Selection Based on Genetic-Algorithm- Embedded Deep Learning for Phishing Website Detection. Electronics, 2022, 1, 1090. https://doi.org/10.3390/ electronics11071090.
4. Z. Chen Y. Liu, C. Chen, M. Lu and X. Zhang (2021), Malicious URL Detection Based on Improved Multilayer Recurrent Convolutional Neural Network Model, Hindawi Security and Communication Networks Volume 2021, Article ID 9994127, 13 pages https://doi.org/10.1155/2021/9994127.
5. R. H. GBURI (2021), Detection of Malicious URLs Using Machine Learning, Yök Tez:704886.
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. WebGuardML: Safeguarding Users with Malicious URL Detection Using Machine Learning;2023 26th International Conference on Computer and Information Technology (ICCIT);2023-12-13
2. An Assessment on Bank Openness, Open Banking and Open Data in Turkey;Ekonomi ve Finansal Araştırmalar Dergisi;2023-06-23