Abstract
Deep learning models for phishing URL classification based on character- and word-level URL features achieve the best performance in terms of accuracy. Various improvements have been proposed through deep learning parameters, including the structure and learning strategy. However, the existing deep learning approach shows a degradation in recall according to the nature of a phishing attack that is immediately discarded after being reported. An additional optimization process that can minimize the false negatives by selecting the core features of phishing URLs is a promising avenue of improvement. To search the optimal URL feature set and to fully exploit it, we propose a combined searching and learning strategy that effectively models the URL classifier for recall. By incorporating the deep-learning-based URL classifier with the genetic algorithm to search the optimal feature set that minimizing the false negatives, an optimized classifier that guarantees the best performance was obtained. Extensive experiments on three real-world datasets consisting of 222,541 URLs showed the highest recall among the deep learning models. We demonstrated the superiority of the method by 10-fold cross-validation and confirmed that the recall improved compared to the latest deep learning method. In particular, the accuracy and recall were improved by 4.13%p and 7.07%p, respectively, compared to the convolutional–recurrent neural network in which the feature selection optimization was omitted.
Funder
National Research Foundation of Korea
Subject
Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering
Cited by
18 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献