Optimized URL Feature Selection Based on Genetic-Algorithm-Embedded Deep Learning for Phishing Website Detection

Author:

Bu Seok-JunORCID,Kim Hae-Jung

Abstract

Deep learning models for phishing URL classification based on character- and word-level URL features achieve the best performance in terms of accuracy. Various improvements have been proposed through deep learning parameters, including the structure and learning strategy. However, the existing deep learning approach shows a degradation in recall according to the nature of a phishing attack that is immediately discarded after being reported. An additional optimization process that can minimize the false negatives by selecting the core features of phishing URLs is a promising avenue of improvement. To search the optimal URL feature set and to fully exploit it, we propose a combined searching and learning strategy that effectively models the URL classifier for recall. By incorporating the deep-learning-based URL classifier with the genetic algorithm to search the optimal feature set that minimizing the false negatives, an optimized classifier that guarantees the best performance was obtained. Extensive experiments on three real-world datasets consisting of 222,541 URLs showed the highest recall among the deep learning models. We demonstrated the superiority of the method by 10-fold cross-validation and confirmed that the recall improved compared to the latest deep learning method. In particular, the accuracy and recall were improved by 4.13%p and 7.07%p, respectively, compared to the convolutional–recurrent neural network in which the feature selection optimization was omitted.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Computer Networks and Communications,Hardware and Architecture,Signal Processing,Control and Systems Engineering

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3