Microtubule-Targeting Combined with HDAC Inhibition Is a Novel Therapeutic Strategy for Diffuse Intrinsic Pontine Gliomas

Author:

Ehteda Anahid1ORCID,Khan Aaminah12ORCID,Rajakumar Gayathiri2ORCID,Vanniasinghe Anne S.2ORCID,Gopalakrishnan Anjana2ORCID,Liu Jie2ORCID,Tsoli Maria12ORCID,Ziegler David S.123ORCID

Affiliation:

1. 1School of Clinical Medicine, UNSW Medicine & Health, UNSW Sydney, Sydney, NSW, Australia.

2. 2Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Kensington, NSW, Australia.

3. 3Kids Cancer Centre, Sydney Children's Hospital, High St, Randwick, Australia.

Abstract

Abstract Diffuse intrinsic pontine gliomas (DIPG) are an incurable childhood brain cancer for which novel treatments are needed. DIPGs are characterized by a mutation in the H3 histone (H3K27M), resulting in loss of H3K27 methylation and global gene dysregulation. TRX-E-009–1 is a novel anticancer agent with preclinical activity demonstrated against a range of cancers. We examined the antitumor activity of TRX-E-009–1 against DIPG neurosphere cultures and observed tumor-specific activity with IC50s ranging from 20 to 100 nmol/L, whereas no activity was observed against normal human astrocyte cells. TRX-E-009–1 exerted its anti-proliferative effect through the induction of apoptotic pathways, with marked increases in cleaved caspase 3 and cleaved PARP levels, while also restoring histone H3K27me3 methylation. Co-administration of TRX-E-009–1 and the histone deacetylase (HDAC) inhibitor SAHA extended survival in DIPG orthotopic animal models. This antitumor effect was further enhanced with irradiation. Our findings indicate that TRX-E-009–1, combined with HDAC inhibition, represents a novel, potent therapy for children with DIPG.

Funder

Kids' Cancer Project

Cancer Institute NSW

National Health and Medical Research Council

Publisher

American Association for Cancer Research (AACR)

Subject

Cancer Research,Oncology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3