Erythroid Differentiation Enhances RNA Mis-Splicing in SF3B1-Mutant Myelodysplastic Syndromes with Ring Sideroblasts

Author:

Moura Pedro L.1ORCID,Mortera-Blanco Teresa1ORCID,Hofman Isabel J.1ORCID,Todisco Gabriele12ORCID,Kretzschmar Warren W.13ORCID,Björklund Ann-Charlotte1ORCID,Creignou Maria14ORCID,Hagemann-Jensen Michael35ORCID,Ziegenhain Christoph35ORCID,Cabrerizo Granados David1ORCID,Barbosa Indira1ORCID,Walldin Gunilla1ORCID,Jansson Monika1ORCID,Ashley Neil6ORCID,Mead Adam J.6ORCID,Lundin Vanessa1ORCID,Dimitriou Marios13ORCID,Yoshizato Tetsuichi13ORCID,Woll Petter S.13ORCID,Ogawa Seishi178ORCID,Sandberg Rickard35ORCID,Jacobsen Sten Eirik W.1346ORCID,Hellström-Lindberg Eva14ORCID

Affiliation:

1. 1Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine, Karolinska Institutet, Huddinge, Sweden.

2. 2Department of Biomedical Sciences, Humanitas University, Milan, Italy.

3. 3Department of Cell and Molecular Biology (CMB), Karolinska Institutet, Stockholm, Sweden.

4. 4Department of Medicine, Division of Hematology, Karolinska University Hospital, Huddinge, Sweden.

5. 5Xpress Genomics AB, Stockholm, Sweden.

6. 6Hematopoietic Stem Cell Laboratory, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom.

7. 7Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Kyoto, Japan.

8. 8Institute for the Advanced Study of Human Biology (WPI-ASHBi), Kyoto University, Kyoto, Japan.

Abstract

Abstract Myelodysplastic syndromes with ring sideroblasts (MDS-RS) commonly develop from hematopoietic stem cells (HSC) bearing mutations in the splicing factor SF3B1 (SF3B1mt). Direct studies into MDS-RS pathobiology have been limited by a lack of model systems that fully recapitulate erythroid biology and RS development and the inability to isolate viable human RS. Here, we combined successful direct RS isolation from patient samples, high-throughput multiomics analysis of cells encompassing the SF3B1mt stem-erythroid continuum, and functional assays to investigate the impact of SF3B1mt on erythropoiesis and RS accumulation. The isolated RS differentiated, egressed into the blood, escaped traditional nonsense-mediated decay (NMD) mechanisms, and leveraged stress-survival pathways that hinder wild-type hematopoiesis through pathogenic GDF15 overexpression. Importantly, RS constituted a contaminant of magnetically enriched CD34+ cells, skewing bulk transcriptomic data. Mis-splicing in SF3B1mt cells was intensified by erythroid differentiation through accelerated RNA splicing and decreased NMD activity, and SF3B1mt led to truncations in several MDS-implicated genes. Finally, RNA mis-splicing induced an uncoupling of RNA and protein expression, leading to critical abnormalities in proapoptotic p53 pathway genes. Overall, this characterization of erythropoiesis in SF3B1mt RS provides a resource for studying MDS-RS and uncovers insights into the unexpectedly active biology of the “dead-end” RS. Significance: Ring sideroblast isolation combined with state-of-the-art multiomics identifies survival mechanisms underlying SF3B1-mutant erythropoiesis and establishes an active role for erythroid differentiation and ring sideroblasts themselves in SF3B1-mutant myelodysplastic syndrome pathogenesis.

Funder

Cancerfonden

Vetenskapsrådet

Knut och Alice Wallenbergs Stiftelse

Publisher

American Association for Cancer Research (AACR)

Subject

Cancer Research,Oncology

Reference48 articles.

1. Splicing together the origins of MDS-RS;Meyer;Blood,2017

2. WHO classification of tumours of haematopoietic and lymphoid tissues;Swerdlow;Lyon: International Agency for Research on Cancer,2017

3. Ring sideroblasts and sideroblastic anemias;Cazzola;Haematologica,2011

4. Frequent pathway mutations of splicing machinery in myelodysplasia;Yoshida;Nature,2011

5. SF3B1-initiating mutations in MDS-RSs target lymphomyeloid hematopoietic stem cells;Mortera-Blanco;Blood,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3