Using Machine Learning to Predict TP53 Mutation Status and Aggressiveness of Prostate Cancer from Routine Histology Images

Author:

Bordeleau François123ORCID

Affiliation:

1. 1Oncology Division, Centre de Recherche du CHU de Québec-Université Laval, Québec City, Québec, Canada.

2. 2Centre de Recherche sur le Cancer, Université Laval, Québec City, Québec, Canada.

3. 3Département de Biologie Moléculaire, Biochimie Médicale et Pathologie, Faculté de Médecine Université Laval, Québec City, Québec, Canada.

Abstract

Abstract Despite years of progress, we still lack reliable tools to predict the aggressiveness of tumors, including in the case of prostate cancer. Biomarkers have been developed, but they often suffer from poor accuracy if used alone due to tumor heterogeneity. Nevertheless, some mutations, notably TP53 mutations, are highly correlated with progression. In their work in this issue of Cancer Research, Pizurica and colleagues implemented a machine learning–based model applied to routine histology and trained with prior information on TP53 mutation status. Their model output provides a quantitative prediction of TP53 mutation status while having a strong correlation with aggressiveness, showing promise as a prognostic in silico biomarker. See related article by Pizurica et al., p. 2970

Publisher

American Association for Cancer Research (AACR)

Subject

Cancer Research,Oncology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3