The Application of Deep Learning in Cancer Prognosis Prediction

Author:

Zhu Wan,Xie LongxiangORCID,Han Jianye,Guo XiangqianORCID

Abstract

Deep learning has been applied to many areas in health care, including imaging diagnosis, digital pathology, prediction of hospital admission, drug design, classification of cancer and stromal cells, doctor assistance, etc. Cancer prognosis is to estimate the fate of cancer, probabilities of cancer recurrence and progression, and to provide survival estimation to the patients. The accuracy of cancer prognosis prediction will greatly benefit clinical management of cancer patients. The improvement of biomedical translational research and the application of advanced statistical analysis and machine learning methods are the driving forces to improve cancer prognosis prediction. Recent years, there is a significant increase of computational power and rapid advancement in the technology of artificial intelligence, particularly in deep learning. In addition, the cost reduction in large scale next-generation sequencing, and the availability of such data through open source databases (e.g., TCGA and GEO databases) offer us opportunities to possibly build more powerful and accurate models to predict cancer prognosis more accurately. In this review, we reviewed the most recent published works that used deep learning to build models for cancer prognosis prediction. Deep learning has been suggested to be a more generic model, requires less data engineering, and achieves more accurate prediction when working with large amounts of data. The application of deep learning in cancer prognosis has been shown to be equivalent or better than current approaches, such as Cox-PH. With the burst of multi-omics data, including genomics data, transcriptomics data and clinical information in cancer studies, we believe that deep learning would potentially improve cancer prognosis.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Cancer Research,Oncology

Reference121 articles.

1. Cancer statistics, 2019

2. Visible Machine Learning for Biomedicine;Michael;Cell,2018

3. Nonparametric Estimation from Incomplete Observations

4. Evaluation of Survival Data and Two New Rank Order Statistics Arising In Its Consideration;NW;Cancer Chemother. Rep.,1966

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3