Facile synthesis of oriented zinc oxide seed layer for the hydrothermal growth of zinc oxide nanorods

Author:

Farhad SFU,Tanvir NI,Bashar MS,Hossain MS,Sultana M,Khatun N

Abstract

Oriented zine oxide (ZnO) seed layers were deposited by simple drop casting of zinc acetate dihydrate (ZAD) solution on glass substrates at room temperature followed by a post-heat treatment at 250 oC. X-ray diffraction (XRD) analyses revealed that ZAD solutions with concentration 0.0025 – 0.0100 M produced amorphous type thin films, whereas 0.0200 M ZAD solutions produced ZnO seed layers with a preferential c-axis texturing.The Scanning Electron Microscopy (SEM) analyses evident that the morphology of ZnO seed layer surface is compact and coherently carpets the underlying glass substrate. ZnO nanorods were then grown by hydrothermal method atop the ZnO seeded and non-seeded substrates. The presence of ZnO seeding layers was found to be beneficial for growing ZnO NRs films vertically. The optical bandgap of ZnO seed and ZnO NR were estimated to be in the range of 3.40 – 3.95 eV and 3.20 – 3.25 eV respectively by using UV-VIS-NIR diffuse reflection spectroscopy. The room temperature photoluminescence analyses revealed that nanostructured ZnO films exhibit a sharp near-band-edge luminescence peak at ~380 nm consistent with the estimated optical band gap and the ZnO nanorod arrays are notably free from defect-related green-yellow emission peaks.Bangladesh J. Sci. Ind. Res.53(4), 233-244, 2018

Publisher

Bangladesh Journals Online (JOL)

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3