Affiliation:
1. Department of Plant Biology and Genome Center, University of California, Davis, California 95616
2. Department of Horticulture and Landscape Architecture, Purdue University, Lafayette, Indiana 47907
3. Department of Biology, Vancouver Island University, Vancouver, Canada V9R 5S5
Abstract
Abstract
Seed death resulting from hybridization between Arabidopsis thaliana and Arabidopsis arenosa has complex genetic determination and involves deregulation 5 to 8 d after pollination (DAP) of AGAMOUS-LIKE genes and retroelements. To identify causal mechanisms, we compared transcriptomes of compatible and incompatible hybrids and parents at 3 DAP. Hybrids misexpressed endosperm and seed coat regulators and hyperactivated genes encoding ribosomal, photosynthetic, stress-related, and immune response proteins. Regulatory disruption was more severe in Columbia-0 hybrids than in C24 hybrids, consistent with the degree of incompatibility. Maternal loss-of-function alleles for endosperm growth factor TRANSPARENT TESTA GLABRA2 and HAIKU1 and defense response regulators NON-EXPRESSOR OF PATHOGENESIS RELATED1 and SALICYLIC ACID INDUCTION-DEFICIENT2 increased hybrid seed survival. The activation of presumed POLYCOMB REPRESSIVE COMPLEX (PRC) targets, together with a 20-fold reduction in expression of FERTILIZATION INDEPENDENT SEED2, indicated a PRC role. Proximity to transposable elements affected natural variation for gene regulation, but transposon activation did not differ from controls. Collectively, this investigation provides candidates for multigenic orchestration of the incompatibility response through disruption of endosperm development, a novel role for communication between endosperm and maternal tissues and for pathways previously connected to immunity, but, surprisingly, does not identify a role for transposons.
Publisher
Oxford University Press (OUP)
Subject
Cell Biology,Plant Science
Cited by
38 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献