IMPa-4, anArabidopsisImportin α Isoform, Is Preferentially Involved inAgrobacterium-Mediated Plant Transformation

Author:

Bhattacharjee Saikat1,Lee Lan-Ying1,Oltmanns Heiko1,Cao Hongbin1,Veena 1,Cuperus Joshua,Gelvin Stanton B.1

Affiliation:

1. Department of Biological Sciences, Purdue University, West Lafayette, Indiana 47907

Abstract

AbstractSuccessful transformation of plants by Agrobacterium  tumefaciens requires that the bacterial T-complex actively escorts T-DNA into the host's nucleus. VirD2 and VirE2 are virulence proteins on the T-complex that have plant-functional nuclear localization signal sequences that may recruit importin α proteins of the plant for nuclear import. In this study, we evaluated the involvement of seven of the nine members of the Arabidopsis thaliana importin α family in Agrobacterium transformation. Yeast two-hybrid, plant bimolecular fluorescence complementation, and in vitro protein–protein interaction assays demonstrated that all tested Arabidopsis importin α members can interact with VirD2 and VirE2. However, only disruption of the importin IMPa-4 inhibited transformation and produced the rat (resistant to Agrobacterium transformation) phenotype. Overexpression of six importin α members, including IMPa-4, rescued the rat phenotype in the impa-4 mutant background. Roots of wild-type and impa-4 Arabidopsis plants expressing yellow fluorescent protein–VirD2 displayed nuclear localization of the fusion protein, indicating that nuclear import of VirD2 is not affected in the impa-4 mutant. Somewhat surprisingly, VirE2–yellow fluorescent protein mainly localized to the cytoplasm of both wild-type and impa-4 Arabidopsis cells and to the cytoplasm of wild-type tobacco (Nicotiana tabacum) cells. However, bimolecular fluorescence complementation assays indicated that VirE2 could localize to the nucleus when IMPa-4, but not when IMPa-1, was overexpressed.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3