The Arabidopsis EIN3 Binding F-Box Proteins EBF1 and EBF2 Have Distinct but Overlapping Roles in Ethylene Signaling

Author:

Binder Brad M.1,Walker Joseph M.2,Gagne Jennifer M.2,Emborg Thomas J.2,Hemmann Georg2,Bleecker Anthony B.1,Vierstra Richard D.2

Affiliation:

1. Department of Botany, University of Wisconsin, Madison, Wisconsin 53706

2. Department of Genetics, University of Wisconsin, Madison, Wisconsin 53706

Abstract

Abstract Ethylene signaling in Arabidopsis thaliana converges on the ETHYLENE-INSENSITIVE3 (EIN3)/EIN3-Like (EIL) transcription factors to induce various responses. EIN3 BINDING F-BOX1 (EBF1) and EBF2 were recently shown to function in ethylene perception by regulating EIN3/EIL turnover. In the absence of ethylene, EIN3 and possibly other EIL proteins are targeted for ubiquitination and subsequent degradation by Cullin 1–based E3 complexes containing EBF1 and 2. Ethylene appears to block this ubiquitination, allowing EIN3/EIL levels to rise and mediate ethylene signaling. Through analysis of mutant combinations affecting accumulation of EBF1, EBF2, EIN3, and EIL1, we show that EIN3 and EIL1 are the main targets of EBF1/2. Kinetic analyses of hypocotyl growth inhibition in response to ethylene and growth recovery after removal of the hormone revealed that EBF1 and 2 have temporally distinct but overlapping roles in modulating ethylene perception. Whereas EBF1 plays the main role in air and during the initial phase of signaling, EBF2 plays a more prominent role during the latter stages of the response and the resumption of growth following ethylene removal. Through their coordinated control of EIN3/EIL1 levels, EBF1 and EBF2 fine-tune ethylene responses by repressing signaling in the absence of the hormone, dampening signaling at high hormone concentrations, and promoting a more rapid recovery after ethylene levels dissipate.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3