PHOSPHATIDIC ACID PHOSPHOHYDROLASE1 and 2 Regulate Phospholipid Synthesis at the Endoplasmic Reticulum in Arabidopsis

Author:

Eastmond Peter J.1,Quettier Anne-Laure1,Kroon Johan T.M.2,Craddock Christian1,Adams Nicolette1,Slabas Antoni R.2

Affiliation:

1. Warwick HRI, University of Warwick, Wellesbourne, Warwickshire CV35 9EF, United Kingdom

2. School of Biological and Biomedical Sciences, University of Durham, Durham DH1 3LE, United Kingdom

Abstract

Abstract Phospholipid biosynthesis is essential for the construction of most eukaryotic cell membranes, but how this process is regulated in plants remains poorly understood. Here, we show that in Arabidopsis thaliana, two Mg2+-dependent phosphatidic acid phosphohydrolases called PAH1 and PAH2 act redundantly to repress phospholipid biosynthesis at the endoplasmic reticulum (ER). Leaves from pah1 pah2 double mutants contain ~1.8-fold more phospholipid than the wild type and exhibit gross changes in ER morphology, which are consistent with massive membrane overexpansion. The net rate of incorporation of [methyl-14C]choline into phosphatidylcholine (PC) is ~1.8-fold greater in the double mutant, and the transcript abundance of several key genes that encode enzymes involved in phospholipid synthesis is increased. In particular, we show that PHOSPHORYLETHANOLAMINE N-METHYLTRANSFERASE1 (PEAMT1) is upregulated at the level of transcription in pah1 pah2 leaves. PEAMT catalyzes the first committed step of choline synthesis in Arabidopsis and defines a variant pathway for PC synthesis not found in yeasts or mammals. Our data suggest that PAH1/2 play a regulatory role in phospholipid synthesis that is analogous to that described in Saccharomyces cerevisiae. However, the target enzymes differ, and key components of the signal transduction pathway do not appear to be conserved.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science

Cited by 170 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3