Arabidopsis SET DOMAIN GROUP2Is Required for H3K4 Trimethylation and Is Crucial for Both Sporophyte and Gametophyte Development

Author:

Berr Alexandre1,McCallum Emily J.1,Ménard Rozenn1,Meyer Denise1,Fuchs Jörg2,Dong Aiwu3,Shen Wen-Hui1

Affiliation:

1. Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, 67084 Strasbourg Cedex, France

2. Leibniz-Institute of Plant Genetics and Crop Plant Research, D-06466 Gatersleben, Germany

3. State Key Laboratory of Genetic Engineering, Department of Biochemistry, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, PR China

Abstract

AbstractHistone H3 lysine 4 trimethylation (H3K4me3) is abundant in euchromatin and is in general associated with transcriptional activation in eukaryotes. Although some Arabidopsis thaliana SET DOMAIN GROUP (SDG) genes have been previously shown to be involved in H3K4 methylation, they are unlikely to be responsible for global genome-wide deposition of H3K4me3. Most strikingly, sparse knowledge is currently available about the role of histone methylation in gametophyte development. In this study, we show that the previously uncharacterized SDG2 is required for global H3K4me3 deposition and its loss of function causes wide-ranging defects in both sporophyte and gametophyte development. Transcriptome analyses of young flower buds have identified 452 genes downregulated by more than twofold in the sdg2-1 mutant; among them, 11 genes, including SPOROCYTELESS/NOZZLE (SPL/NZZ) and MALE STERILITY1 (MS1), have been previously shown to be essential for male and/or female gametophyte development. We show that both SPL/NZZ and MS1 contain bivalent chromatin domains enriched simultaneously with the transcriptionally active mark H3K4me3 and the transcriptionally repressive mark H3K27me3 and that SDG2 is specifically required for the H3K4me3 deposition. Our data suggest that SDG2-mediated H3K4me3 deposition poises SPL/NZZ and MS1 for transcriptional activation, forming a key regulatory mechanism in the gene networks responsible for gametophyte development.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3