A COMPASS histone H3K4 trimethyltransferase pentamer transactivates drought tolerance and growth/biomass production in Populus trichocarpa

Author:

Zhang Baofeng1ORCID,Wang Zhuwen1,Dai Xiufang1,Gao Jinghui1,Zhao Jinfeng1,Ma Rong1,Chen Yanjie1,Sun Yi1,Ma Hongyan1,Li Shuang1,Zhou Chenguang1,Wang Jack P.12,Li Wei1ORCID

Affiliation:

1. State Key Laboratory of Tree Genetics and Breeding Northeast Forestry University Harbin 150040 China

2. Forest Biotechnology Group, Department of Forestry and Environmental Resources North Carolina State University Raleigh NC 27695 USA

Abstract

Summary Histone H3 lysine‐4 trimethylation (H3K4me3) activating drought‐responsive genes in plants for drought adaptation has long been established, but the underlying regulatory mechanisms are unknown. Here, using yeast two‐hybrid, bimolecular fluorescence complementation, biochemical analyses, transient and CRISPR‐mediated transgenesis in Populus trichocarpa, we unveiled in this adaptation a regulatory interplay between chromatin regulation and gene transactivation mediated by an epigenetic determinant, a PtrSDG2‐1–PtrCOMPASS (complex proteins associated with Set1)‐like H3K4me3 complex, PtrSDG2‐1–PtrWDR5a‐1–PtrRbBP5‐1–PtrAsh2‐2 (PtrSWRA). Under drought conditions, a transcription factor PtrAREB1‐2 interacts with PtrSWRA, forming a PtrSWRA–PtrAREB1‐2 pentamer, to recruit PtrSWRA to specific promoter elements of drought‐tolerant genes, such as PtrHox2, PtrHox46, and PtrHox52, for depositing H3K4me3 to promote and maintain activated state of such genes for tolerance. CRISPR‐edited defects in the pentamer impaired drought tolerance and elevated expression of PtrHox2, PtrHox46, or PtrHox52 improved the tolerance as well as growth in P. trichocarpa. Our findings revealed the identity of the underlying H3K4 trimethyltransferase and its interactive arrangement with the COMPASS for catalysis specificity and efficiency. Furthermore, our study uncovered how the H3K4 trimethyltransferase–COMPASS complex is recruited to the effector genes for elevating H3K4me3 marks for improved drought tolerance and growth/biomass production in plants.

Publisher

Wiley

Subject

Plant Science,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3