Arabidopsis thaliana RGXT1 and RGXT2 Encode Golgi-Localized (1,3)-α-d-Xylosyltransferases Involved in the Synthesis of Pectic Rhamnogalacturonan-II

Author:

Egelund Jack1,Petersen Bent Larsen1,Motawia Mohammed Saddik2,Damager Iben1,Faik Ahmed3,Olsen Carl Erik4,Ishii Tadashi5,Clausen Henrik6,Ulvskov Peter1,Geshi Naomi1

Affiliation:

1. Biotechnology Group, Danish Institute of Agricultural Sciences and Center for Molecular Plant Physiology, DK-1871 Frederiksberg C, Denmark

2. Plant Biochemistry Laboratory, Department of Plant Biology and Center for Molecular Plant Physiology, Royal Veterinary and Agricultural University, DK-1871 Frederiksberg C, Denmark

3. Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824

4. Department of Natural Sciences and Center for Molecular Plant Physiology, Royal Veterinary and Agricultural University, DK-1871 Frederiksberg C, Denmark

5. Forestry and Forest Research Institute, Tsukuba Norin Kenkyu Danchi-nai, Ibaraki 305-8687, Japan

6. Department of Medical Biochemistry and Genetics, University of Copenhagen, DK-2200 Copenhagen N, Denmark

Abstract

Abstract Two homologous plant-specific Arabidopsis thaliana genes, RGXT1 and RGXT2, belong to a new family of glycosyltransferases (CAZy GT-family-77) and encode cell wall (1,3)-α-d-xylosyltransferases. The deduced amino acid sequences contain single transmembrane domains near the N terminus, indicative of a type II membrane protein structure. Soluble secreted forms of the corresponding proteins expressed in insect cells showed xylosyltransferase activity, transferring d-xylose from UDP-α-d-xylose to l-fucose. The disaccharide product was hydrolyzed by α-xylosidase, whereas no reaction was catalyzed by β-xylosidase. Furthermore, the regio- and stereochemistry of the methyl xylosyl-fucoside was determined by nuclear magnetic resonance to be an α-(1,3) linkage, demonstrating the isolated glycosyltransferases to be (1,3)-α-d-xylosyltransferases. This particular linkage is only known in rhamnogalacturonan-II, a complex polysaccharide essential to vascular plants, and is conserved across higher plant families. Rhamnogalacturonan-II isolated from both RGXT1 and RGXT2 T-DNA insertional mutants functioned as specific acceptor molecules in the xylosyltransferase assay. Expression of RGXT1- and RGXT2-enhanced green fluorescent protein constructs in Arabidopsis revealed that both fusion proteins were targeted to a Brefeldin A–sensitive compartment and also colocalized with the Golgi marker dye BODIPY TR ceramide, consistent with targeting to the Golgi apparatus. Taken together, these results suggest that RGXT1 and RGXT2 encode Golgi-localized (1,3)-α-d-xylosyltransferases involved in the biosynthesis of pectic rhamnogalacturonan-II.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3