Imaging of Endogenous Messenger RNA Splice Variants in Living Cells Reveals Nuclear Retention of Transcripts Inaccessible to Nonsense-Mediated Decay in Arabidopsis

Author:

Göhring Janett1,Jacak Jaroslaw,Barta Andrea1

Affiliation:

1. Max F. Perutz Laboratories, Medical University of Vienna, 1030 Vienna, Austria

Abstract

Abstract Alternative splicing (AS) is an important regulatory process that leads to the creation of multiple RNA transcripts from a single gene. Alternative transcripts often carry premature termination codons (PTCs), which trigger nonsense-mediated decay (NMD), a cytoplasmic RNA degradation pathway. However, intron retention, the most prevalent AS event in plants, often leads to PTC-carrying splice variants that are insensitive to NMD; this led us to question the fate of these special RNA variants. Here, we present an innovative approach to monitor and characterize endogenous mRNA splice variants within living plant cells. This method combines standard confocal laser scanning microscopy for molecular beacon detection with a robust statistical pipeline for sample comparison. We demonstrate this technique on the localization of NMD-insensitive splice variants of two Arabidopsis thaliana genes, RS2Z33 and the SEF factor. The experiments reveal that these intron-containing splice variants remain within the nucleus, which allows them to escape the NMD machinery. Moreover, fluorescence recovery after photobleaching experiments in the nucleoplasm show a decreased mobility of intron-retained mRNAs compared with fully spliced RNAs. In addition, differences in mobility were observed for an mRNA dependent on its origin from an intron-free or an intron-containing gene.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3