Affiliation:
1. Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide–Consejo Superior de Investigaciones Científicas, 41013 Seville, Spain
Abstract
Abstract
Secreted fungal effectors mediate plant–fungus pathogenic interactions. These proteins are typically N-glycosylated, a common posttranslational modification affecting their location and function. N-glycosylation consists of the addition, and subsequent maturation, of an oligosaccharide core in the endoplasmic reticulum (ER) and Golgi apparatus. In this article, we show that two enzymes catalyzing specific stages of this pathway in maize smut (Ustilago maydis), glucosidase I (Gls1) and glucosidase II β-subunit (Gas2), are essential for its pathogenic interaction with maize (Zea mays). Gls1 is required for the initial stages of infection following appressorium penetration, and Gas2 is required for efficient fungal spreading inside infected tissues. While U. maydis Δgls1 cells induce strong plant defense responses, Δgas2 hyphae are able to repress them, showing that slight differences in the N-glycoprotein processing can determine the extent of plant–fungus interactions. Interestingly, the calnexin protein, a central element of the ER quality control system for N-glycoproteins in eukaryotic cells, is essential for avoiding plant defense responses in cells with defective N-glycoproteins processing. Thus, N-glycoprotein maturation and this conserved checkpoint appear to play an important role in the establishment of an initial biotrophic state with the plant, which allows subsequent colonization.
Publisher
Oxford University Press (OUP)
Subject
Cell Biology,Plant Science
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献