S-Nitrosylation of Peroxiredoxin II E Promotes Peroxynitrite-Mediated Tyrosine Nitration

Author:

Romero-Puertas Maria C.1,Laxa Miriam2,Mattè Alessandro1,Zaninotto Federica1,Finkemeier Iris2,Jones Alex M.E.3,Perazzolli Michele1,Vandelle Elodie1,Dietz Karl-Josef2,Delledonne Massimo1

Affiliation:

1. Dipartimento Scientifico e Tecnologico, Università degli Studi di Verona, 37134 Verona, Italy

2. Department of Plant Physiology and Biochemistry, University of Bielefeld, 33501 Bielefeld, Germany

3. Sainsbury Laboratory, John Innes Centre, Norwich NR4 7UH, United Kingdom

Abstract

Abstract Nitric oxide (NO) is a free radical product of cell metabolism that plays diverse and important roles in the regulation of cellular function. S-Nitrosylation is emerging as a specific and fundamental posttranslational protein modification for the transduction of NO bioactivity, but very little is known about its physiological functions in plants. We investigated the molecular mechanism for S-nitrosylation of peroxiredoxin II E (PrxII E) from Arabidopsis thaliana and found that this posttranslational modification inhibits the hydroperoxide-reducing peroxidase activity of PrxII E, thus revealing a novel regulatory mechanism for peroxiredoxins. Furthermore, we obtained biochemical and genetic evidence that PrxII E functions in detoxifying peroxynitrite (ONOO−), a potent oxidizing and nitrating species formed in a diffusion-limited reaction between NO and O2  − that can interfere with Tyr kinase signaling through the nitration of Tyr residues. S-Nitrosylation also inhibits the ONOO− detoxification activity of PrxII E, causing a dramatic increase of ONOO−-dependent nitrotyrosine residue formation. The same increase was observed in a prxII E mutant line after exposure to ONOO−, indicating that the PrxII E modulation of ONOO− bioactivity is biologically relevant. We conclude that NO regulates the effects of its own radicals through the S-nitrosylation of crucial components of the antioxidant defense system that function as common triggers for reactive oxygen species– and NO-mediated signaling events.

Publisher

Oxford University Press (OUP)

Subject

Cell Biology,Plant Science

Cited by 304 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3