Predictive model of unfavorable outcomes for multidrug-resistant tuberculosis

Author:

Arroyo Luiz HenriqueORCID,Ramos Antônio Carlos VieiraORCID,Yamamura MellinaORCID,Berra Thais ZamboniORCID,Alves Luana SelesORCID,Belchior Aylana De SouzaORCID,Santos Danielle TalitaORCID,Alves Josilene DáliaORCID,Campoy Laura TerencianiORCID,Arcoverde Marcos Augusto MoraesORCID,Bollela Valdes RobertoORCID,Bombarda SidneyORCID,Nunes CarlaORCID,Arcêncioio Ricardo AlexandreORCID

Abstract

OBJECTIVE: to analyze the temporal trend, identify the factors related and elaborate a predictive model for unfavorable treatment outcomes for multidrug-resistant tuberculosis (MDR-TB). METHODS: Retrospective cohort study with all cases diagnosed with MDR-TB between the years 2006 and 2015 in the state of São Paulo. The data were collected from the state system of TB cases notifications (TB-WEB). The temporal trend analyzes of treatment outcomes was performed through the Prais-Winsten analysis. In order to verify the factors related to the unfavorable outcomes, abandonment, death with basic cause TB and treatment failure, the binary logistic regression was used. Pictorial representations of the factors related to treatment outcome and their prognostic capacity through the nomogram were elaborated. RESULTS: Both abandonment and death have a constant temporal tendency, whereas the failure showed it as decreasing. Regarding the risk factors for such outcomes, using illicit drugs doubled the odds for abandonment and death. Besides that, being diagnosed in emergency units or during hospitalizations was a risk factor for death. On the contrary, having previous multidrug-resistant treatments reduced the odds for the analyzed outcomes by 33%. The nomogram presented a predictive model with 65% accuracy for dropouts, 70% for deaths and 80% for failure. CONCLUSIONS: The modification of the current model of care is an essential factor for the prevention of unfavorable outcomes. Through predictive models, as presented in this study, it is possible to develop patient-centered actions, considering their risk factors and increasing the chances for cure.

Publisher

Universidade de Sao Paulo, Agencia USP de Gestao da Informacao Academica (AGUIA)

Subject

Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3