Development and validation of a prediction model for unsuccessful treatment outcomes in patients with multi-drug resistance tuberculosis

Author:

Ma J-B,Zeng L-C,Ren F,Dang L-Y,Luo H,Wu Y-Q,Yang X-J,Li R,Yang H,Xu Y

Abstract

Abstract Background The World Health Organization has reported that the treatment success rate of multi-drug resistance tuberculosis is approximately 57% globally. Although new drugs such as bedaquiline and linezolid is likely improve the treatment outcome, there are other factors associated with unsuccessful treatment outcome. The factors associated with unsuccessful treatment outcomes have been widely examined, but only a few studies have developed prediction models. We aimed to develop and validate a simple clinical prediction model for unsuccessful treatment outcomes in patients with multi-drug resistance pulmonary tuberculosis (MDR-PTB). Methods This retrospective cohort study was performed between January 2017 and December 2019 at a special hospital in Xi’an, China. A total of 446 patients with MDR-PTB were included. Least absolute shrinkage and selection operator (LASSO) regression and multivariate logistic regression were used to select prognostic factors for unsuccessful treatment outcomes. A nomogram was built based on four prognostic factors. Internal validation and leave-one-out cross-validation was used to assess the model. Results Of the 446 patients with MDR-PTB, 32.9% (147/446) cases had unsuccessful treatment outcomes, and 67.1% had successful outcomes. After LASSO regression and multivariate logistic analyses, no health education, advanced age, being male, and larger extent lung involvement were identified as prognostic factors. These four prognostic factors were used to build the prediction nomograms. The area under the curve of the model was 0.757 (95%CI 0.711 to 0.804), and the concordance index (C-index) was 0.75. For the bootstrap sampling validation, the corrected C-index was 0.747. In the leave-one-out cross-validation, the C-index was 0.765. The slope of the calibration curve was 0.968, which was approximately 1.0. This indicated that the model was accurate in predicting unsuccessful treatment outcomes. Conclusions We built a predictive model and established a nomogram for unsuccessful treatment outcomes of multi-drug resistance pulmonary tuberculosis based on baseline characteristics. This predictive model showed good performance and could be used as a tool by clinicians to predict who among their patients will have an unsuccessful treatment outcome.

Publisher

Springer Science and Business Media LLC

Subject

Infectious Diseases

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3