Makine Öğrenmesi Yöntemleri Kullanarak Tohum Sayısının Tespiti ve Sınıflandırılması

Author:

ÇETİN Selçuk1,NAR Hakan2,KIZIL Ünal3

Affiliation:

1. CANAKKALE ONSEKIZ MART UNIVERSITY, FACULTY OF AGRICULTURE, DEPARTMENT OF AGRICULTURAL BIOTECHNOLOGY, AGRICULTURAL BIOTECHNOLOGY PR.

2. CANAKKALE ONSEKIZ MART UNIVERSITY, FACULTY OF AGRICULTURE, DEPARTMENT OF AGRICULTURAL STRUCTURES AND IRRIGATION, AGRICULTURAL STRUCTURES AND IRRIGATION PR.

3. ÇANAKKALE ONSEKİZ MART ÜNİVERSİTESİ, ZİRAAT FAKÜLTESİ, TARIMSAL YAPILAR VE SULAMA BÖLÜMÜ

Abstract

Derin öğrenme, makine öğrenmesi ve görüntü işleme teknikleri tarımsal işlerin kolaylaştırılmasında ve üretim aşamsındaki farklı problemlere çözümler geliştirilmesinde kullanılan önemli birer araç haline gelmişlerdir. Bu çalışma kapsamında AugeLab Studio’da derin öğrenme mimarilerinden CNN kullanılarak, eş zamanlı nesne tespiti için genelde tercih edilen YOLO algoritmasıyla bir tohum sayısı ve türünün tespit uygulaması geliştirilmiştir. Çalışma sonucunda 3000 iterasyonla ortalama kayıp 0.417 civarına düşürülmüştür. Analizler sonucunda fasulye sınıflandırma başarı oranı %97-%100 arasında değişiklik gösterirken nohut sınıflandırma oranının %91 ile %100 arasında değişmekte olduğu tespit edilmiştir. Buna ek olarak tek görseldeki toplam 11 adet fasulye ve 10 adet nohut tohumunun sayısı %100 doğrulukla tespit edilmiştir. Sonuç olarak yapay zeka görüntü işleme tekniklerinin kullanılarak tohumluk üretim firmaları, tarımsal biyoteknoloji laboratuvarları ve tohum sertifikasyon kuruluşlarının tohum sayma, çeşit ve/veya tür ayrımı yapma, çimlenen tohumların ayrıştırılması ve tespiti veya tohum sertifikasyon süreçlerindeki yabancı karışımların tespit edilip oranlanması gibi tarımın bir çok alanında iş yükünün ve maliyetin azaltılırken zamandan kazanç sağlanabileceğini göstermiştir.

Publisher

COMU Ziraat Fakultesi Dergisi

Subject

General Medicine

Reference26 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3