A Warning Approach to Mitigating Bandwagon Bias in Online Ratings: Theoretical Analysis and Experimental Investigations

Author:

Wu Ding, ,Guo Xunhua,Wang Yuejun,Chen Guoqing, , ,

Abstract

Current online review systems widely suffer from rating biases. Biased ratings can lead to violations of customer trust and failures of business intelligence. Hence, both practitioners and researchers have directed massive efforts toward curbing rating biases. In this paper, we investigate bandwagon bias, the rating distortion resulting from individuals posting ratings shifted toward the displayed average rating, and propose a bias warning approach to mitigate this bias. Drawing on the flexible correction model, the theory of valuation in behavioral economics, and previous warning research, we design an effective warning strategy in two steps. First, we start with the risk-alert warning strategy, which prior research has widely employed, and rationalize its deficiencies by synthesizing theoretical analysis and extant empirical evidence. Second, considering the deficiencies, we identify a supplementary content design factor—the ranking task—and construct a risk-alert-with-ranking-task warning strategy. We then empirically test the effects of the two warning strategies on individual ratings in cases in which bandwagon bias either occurs or does not occur in individuals’ initial assessments. The results of four controlled experiments indicate that (1) the risk-alert strategy can reduce bandwagon bias in individual ratings but will elicit unwanted rating distortions when bandwagon bias does not occur in individuals’ initial assessments, and (2) the risk-alert-with-ranking-task strategy can mitigate bandwagon bias while avoiding the unwanted rating distortions above and can thus function as an effective warning strategy. Our research contributes to the literature by proposing an effective debiasing solution for bandwagon bias and a bias warning approach for online rating debiasing, which can help increase rating informativeness on online platforms.

Publisher

Association for Information Systems

Subject

Computer Science Applications,Information Systems

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Forms of Bias in Online Reviews and Their Implications for Management of Customer Knowledge;Advances in Business Strategy and Competitive Advantage;2024-02-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3