Phospholipase A2-dependent Release of Inflammatory Cytokines by Superantigen-Stimulated Nasal Polyps of Patients with Chronic Rhinosinusitis

Author:

Mruwat Rufayda1,Kivity Shmuel2,Landsberg Roee3,Yedgar Saul1,Langier Sheila2

Affiliation:

1. Department of Biochemistry, Hebrew University-Hadassah Medical School, Jerusalem, Israel

2. Allergy and Clinical Immunology Unit

3. Ear Nose and Throat Department, Tel Aviv Medical Center, Sackler School of Medicine, Tel Aviv University, Tel Aviv, lsrael

Abstract

Background Chronic rhinosinusitis (CRS) is an inflammatory/allergic disease with unclear pathophysiology, but it has been linked to an imbalance in the production of eicosanoids, which are metabolites of arachidonic acid, and results from phospholipids hydrolysis by phospholipase A2 (PLA2). As of yet, the role of PLA2 in CRS has hardly been studied, except for a report that group II PLA2 expression is elevated in interleukin (IL) 1β or tumor necrosis factor α-stimulated CRS nasal tissues with and without polyps. The PLA2 families include extracellular (secretory) and intracellular isoforms, which are involved in the regulation of inflammatory processes in different ways. Here we comprehensively investigated the expression of PLA2s, particularly those reported to be involved in respiratory disorders, in superantigen (SAE)-stimulated nasal polyps from patients with CRS with polyps, and determined their role in inflammatory cytokine production by inhibition of PLA2 expression. Methods The release of IL-5, IL-13, IL-17, and interferon γ by nasal polyps dispersed cells (NPDC) was determined concomitantly with PLA2 messenger RNA expression, under SAE stimulation, with or without dexamethasone, as a regulator of PLA2 expression. Results Stimulation of NPDCs by SAE-induced cytokine secretion with enhanced expression of several secretory PLA2 and Ca2+-independent PLA2, while suppressing cytosolic PLA2 expression. All these were reverted to the level of unstimulated NPDCs on treatment with dexamethasone. Conclusion This study further supports the key role of secretory PLA2 in the pathophysiology of respiratory disorders and presents secretory PLA2 inhibition as a therapeutic strategy for the treatment of CRS and airway pathologies in general.

Publisher

SAGE Publications

Subject

General Medicine,Otorhinolaryngology,Immunology and Allergy

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3