Cellular Trafficking of Sn-2 Phosphatidylcholine Prodrugs Studied with Fluorescence Lifetime Imaging and Super-resolution Microscopy

Author:

Maji Dolonchampa1ORCID,Lu Jin2ORCID,Sarder Pinaki3ORCID,Schmieder Anne H4,Cui Grace4,Yang Xiaoxia4,Pan Dipanjan5ORCID,Achilefu Samuel6ORCID,Lanza Gregory M4

Affiliation:

1. Optical Radiology Lab, Department of Radiology, Washington University School of Medicine, St. Louis, MO 63110, USA

2. Department of Electrical and Systems Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA

3. Department of Pathology and Anatomical Sciences, Jacobs School of Medicine & Biomedical Sciences, University of Buffalo, Buffalo, NY 14203

4. Division of Cardiology, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA

5. Department of Bioengineering, University of Illinois at Urbana-Champaign, Champaign, IL, USA

6. Department of Biomedical Engineering, Washington University in St. Louis, MO 63130, USA

Abstract

While the in vivoefficacy of Sn-2 phosphatidylcholine prodrugs incorporated into targeted, non-pegylated lipid-encapsulated nanoparticles was demonstrated in prior preclinical studies, the microscopic details of cell prodrug internalization and trafficking events are unknown. Classic fluorescence microscopy, fluorescence lifetime imaging microscopy, and single-molecule super-resolution microscopy were used to investigate the cellular handling of doxorubicin-prodrug and AlexaFluor-488-prodrug. Sn-2 phosphatidylcholine prodrugs delivered by hemifusion of nanoparticle and cell phospholipid membranes functioned as phosphatidylcholine mimics, circumventing the challenges of endosome sequestration and release. Phosphatidylcholine prodrugs in the outer cell membrane leaflet translocated to the inner membrane leaflet by ATP-dependent and ATP-independent mechanisms and distributed broadly within the cytosolic membranes over the next 12 h. A portion of the phosphatidylcholine prodrug populated vesicle membranes trafficked to the perinuclear Golgi/ER region, where the drug was enzymatically liberated and activated. Native doxorubicin entered the cells, passed rapidly to the nucleus, and bound to dsDNA, whereas DOX was first enzymatically liberated from DOX-prodrug within the cytosol,particularly in the perinuclear region, before binding nuclear dsDNA. Much of DOX-prodrug was initially retained within intracellular membranes. In vitroanti-proliferation effectiveness of the two drug delivery approaches was equivalent at 48 h, suggesting that residual intracellular DOX-prodrug may constitute a slow-release drug reservoir that enhances effectiveness. We have demonstrated thatSn-2 phosphatidylcholine prodrugs function as phosphatidylcholine mimics following reported pathways of phosphatidylcholine distribution and metabolism. Drug complexed to the Sn-2 fatty acid is enzymatically liberated and reactivated over many hours, which may enhance efficacy over time.

Funder

Foundation for Barnes-Jewish Hospital

Office of Extramural Research, National Institutes of Health

Publisher

Andover House Inc

Subject

General Medicine

Reference45 articles.

1. [1] G. M. Lanza, C. Moonen, J. R. Baker, Jr., E. Chang, Z. Cheng, P. Grodzinski, K. Ferrara, K. Hynynen, G. Kelloff, Y. E. Lee, A. K. Patri, D. Sept, J. E. Schnitzer, B. J. Wood, M. Zhang, G. Zheng, and K. Farahani, “Assessing the barriers to image-guided drug delivery,” Wiley Interdiscip Rev Nanomed Nanobiotechnol, vol. 6, no. 1, pp. 1-14, Jan-Feb, 2014.

2. [2] G. M. Lanza, X. Yu, P. M. Winter, D. R. Abendschein, K. K. Karukstis, M. J. Scott, L. K. Chinen, R. W. Fuhrhop, D. E. Scherrer, and S. A. Wickline, “Targeted antiproliferative drug delivery to vascular smooth muscle cells with a magnetic resonance imaging nanoparticle contrast agent: implications for rational therapy of restenosis,” Circulation, vol. 106, no. 22, pp. 2842-7, Nov 26, 2002.

3. [3] P. M. Winter, A. M. Neubauer, S. D. Caruthers, T. D. Harris, J. D. Robertson, T. A. Williams, A. H. Schmieder, G. Hu, J. S. Allen, E. K. Lacy, H. Zhang, S. A. Wickline, and G. M. Lanza, “Endothelial alpha(v)beta3 integrin-targeted fumagillin nanoparticles inhibit angiogenesis in atherosclerosis,” Arterioscler Thromb Vasc Biol, vol. 26, no. 9, pp. 2103-9, Sep, 2006.

4. [4] K. C. Partlow, G. M. Lanza, and S. A. Wickline, “Exploiting lipid raft transport with membrane targeted nanoparticles: a strategy for cytosolic drug delivery,” Biomaterials, vol. 29, no. 23, pp. 3367-75, Aug, 2008.

5. [5] T. Cyrus, H. Zhang, J. S. Allen, T. A. Williams, G. Hu, S. D. Caruthers, S. A. Wickline, and G. M. Lanza, “Intramural delivery of rapamycin with alphavbeta3-targeted paramagnetic nanoparticles inhibits stenosis after balloon injury,” Arterioscler Thromb Vasc Biol, vol. 28, no. 5, pp. 820-6, May, 2008.

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3