Recombinant cell penetrating peptides and intrabodies targeting membrane-bound mutated KRAS antigens

Author:

Ng Jeremy Jeack Ceen1,Low Zhi Xuan1,Alessandro Larsen1,Fong Jung Yin1,Yong Audrey Onn Yi Au2,Ng Minn-E3,Teo Michelle Yee Mun1,Yam Hok Chai1,In Lionel Lian Aun1

Affiliation:

1. Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia

2. Department of Life Sciences, Imperial College London, London, United Kingdom

3. Department of Oncology, The University of Oxford, United Kingdom

Abstract

One of the drivers for early carcinogenesis involves specific somatic point substitution mutations in the KRAS gene which damages its ability to conduct signal transduction. Although antibodies can be used for the targeting of KRAS antigen, their localization along the cell’s inner membrane serves as a barrier against the accessibility of the antibodies. This study describes the evaluation of two internalization strategies, namely the endocytosis-based cell penetrating peptide (CPP) approach and the adenoviral-based intrabody (IB) approach, for the delivery of an anti-mutant KRAS single-chain variable fragment (scFv) into the cell. Splicing by overhang extension polymerase chain reaction (SOE-PCR) was used for the fusion of scFv with an enhanced green fluorescence protein (eGFP) and Antennapedia-PTD (Antp), a cell penetrating signal peptide. The fused construct (Antp-scFv-eGFP) at a concentration of 0.085 mg/ml was expressed in E. coli (BL21), while recombinant adenoviral particles containing the scFv-eGFP gene were harvested from HEK 293 cells. Both SW480 and HeLa cells were treated with Antp-scFv-eGFP and recombinant adenoviral particles, and their eGFP localization and intensity were compared to determine their scFv binding efficiencies. The IB approach was shown to exhibit a 3-fold higher fluorescence signal intensity compared to the CPP approach. This proof-of-concept study demonstrated that both antigens for either screening, diagnostic approaches can be potentially adopted when targeting various intracellular or therapeutic purposes.

Funder

Ministry of Higher Education, Malaysia

Publisher

Malaysian Society for Molecular Biology and Biotechnology

Subject

Molecular Biology,Biotechnology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3