Abstract
Current commercial antivirus detection engines still rely on signature-based methods. However, with the huge increase in the number of new malware, current detection methods become not suitable. In this paper, we introduce a malware detection model based on ensemble learning. The model is trained using the minimum number of signification features that are extracted from the file header. Evaluations show that the ensemble models slightly outperform individual classification models. Experimental evaluations show that our model can predict unseen malware with an accuracy rate of 0.998 and with a false positive rate of 0.002. The paper also includes a comparison between the performance of the proposed model and with different machine learning techniques. We are emphasizing the use of machine learning based approaches to replace conventional signature-based methods.
Publisher
Brno University of Technology
Subject
Computational Mathematics,General Computer Science,Theoretical Computer Science
Cited by
15 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献