Explainable AI model for PDFMal detection based on gradient boosting model

Author:

Elattar Mona,Younes Ahmed,Gad IbrahimORCID,Elkabani Islam

Abstract

AbstractPortable document formats (PDFs) are widely used for document exchange due to their widespread usage and versatility. However, PDFs are highly vulnerable to malware attacks, which pose significant security risks. Existing defense mechanisms often struggle to effectively detect and mitigate these threats, highlighting the need for more robust solutions. This paper introduces a robust framework that uses advanced tree-based ensemble models to detect malicious PDFs using the Evasive-PDFMal2022 dataset. The proposed model achieves a recall rate of 100%, an accuracy rate of 99.95%, and a fast inference time of 0.1723 s. Furthermore, the framework exhibits minimal false positive and false negative rates, ensuring a high level of precision in distinguishing between malicious and benign PDFs. Shapley additive explanations are used to improve the interpretability and reliability of the model’s predictions. The results highlight the effectiveness of the proposed model in improving PDF document security and addressing the challenges posed by malware attacks.

Funder

Tanta University

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3