Features of the Manufacturing Process of Silicon Tips for Cantilevers

Author:

Novak A.V., ,Novak V.R.,Rumyantsev A.V., , ,

Abstract

Sample surface examination in atomic force microscopy is carried out using cantilevers having the form of elastic consoles with sharp needle (tip) at the free end. Quality of images obtained from atomic force microscope (AFM) heavily depends on tip sharpness degree. Silicon cantilevers made based on wet anisotropic etching are widely used in atomic force microscopy. This paper studies the dependence of the shape and size of the resulting tip on the concentration of KOH in the solution, as well as the effect of pyrogenic oxidation and oxidation in a dry oxygen atmosphere on the sharpness of the tip during the sharpening process. It was shown that when 70 % concentration is used, tips with the highest aspect ratio and maximum height are obtained. In this case, the shape of the needle is an octagonal pyramid, the lateral faces of which are formed by eight crystallographic planes from {311} and {131}. It was found that in a two-stage sharpening process, consisting of pyrogenic oxidation and oxidation in a dry oxygen atmosphere, it is possible to form sufficiently sharp probes with a tip radius of 2–5 nm and an apex angle of 14–24°. It has been established that a one-stage sharpening process based on pyrogenic oxidation provides only the production of probes with a radius of about 14 nm. Comparative tests of the manufactured probes in obtaining AFM images of a test sample of a polycrystalline silicon film with hemispherical grains (HSG-Si) were presented. Research study has revealed that such a statistical parameter as the relative increment of the surface area Sdr is the most sensitive to probe sharpness for surfaces of the HSG-Si film type.

Publisher

National Research University of Electronic Technology (MIET)

Subject

General Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3